Shaping the orbital angular momentum of optical pulses in the spectral domain is a means of managing light in space and time that offers many possible applications. However, these are limited by the small number of techniques available, whose flexibility does not yet rival that of the continuous regime. We propose here to implement a tunable hyperspectral management of the orbital angular momentum of a polychromatic light field. The main idea is to exploit the dispersive nature of geometric phase optical elements by intentionally choosing to work in a regime of high anisotropic optical retardance. An experimental proof of principle is demonstrated in the visible range using a supercontinuum laser and an optically thick, electrically controllable, liquid crystal structured wave plate.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.521749DOI Listing

Publication Analysis

Top Keywords

orbital angular
12
angular momentum
12
hyperspectral optical
4
optical orbital
4
momentum modulation
4
modulation tunable
4
tunable structured
4
structured waveplates
4
waveplates shaping
4
shaping orbital
4

Similar Publications

α-decay half-life predictions with support vector machine.

Sci Rep

December 2024

School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

In this study, we investigate the application of support vector machines utilizing a radial basis function kernel for predicting nuclear α-decay half-lives. Our approach integrates a comprehensive set of physics-derived features, including characteristics derived from nuclear structure, to systematically evaluate their impact on predictive accuracy. In addition to traditional parameters such as proton and neutron numbers, as well as terms based on the liquid drop model (e.

View Article and Find Full Text PDF

Polarization ellipses are well-known as the result of coherent superposition of photonic spin states. As orbital counterparts, in this Letter, we introduce centroid ellipses that are geometrically mapped from optical orbital angular momentum (OAM) superpositions on a modal Poincaré sphere (PS) by coaxial interference. Different from not easily observable polarization ellipses, these centroid ellipses can be directly observed from dynamical interferograms with broken rotational symmetry.

View Article and Find Full Text PDF

Orbital angular momentum of single photons: revealing quantum fundamentals.

Philos Trans A Math Phys Eng Sci

December 2024

School of Physics and Astronomy, The University of Glasgow, Glasgow, G12 8QQ, UK.

In 1992, Allen . (Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

Nearfield observation of spin-orbit interactions at nanoscale using photoinduced force microscopy.

Sci Adv

December 2024

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!