Physical-layer authentication (PLA) based on hardware fingerprints can safeguard optical networks against large-scale masquerade or active injection attacks. However, traditional schemes rely on massive labeled close-set data. Here, we propose an unsupervised hardware fingerprint authentication based on a variational autoencoder (VAE). Specifically, the triplets are generated through variational inference on unlabeled optical spectra and then applied to train the feature extractor, which has an excellent generalization ability and enables fingerprint feature extraction from previously unknown optical transmitters. The feasibility of the proposed scheme is experimentally verified by the successful classification of eight optical transmitters after a 20 km standard single-mode fiber (SSMF) transmission, to distinguish efficiently the rogue from legal devices. A recognition accuracy of 99% and a miss alarm rate of 0% are achieved even under the interference of multiple rogue devices. Moreover, the proposed scheme is verified to have a comparable performance with the results obtained from supervised learning.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.518952DOI Listing

Publication Analysis

Top Keywords

unsupervised hardware
8
hardware fingerprint
8
fingerprint authentication
8
optical transmitters
8
proposed scheme
8
variational autoencoder-assisted
4
autoencoder-assisted unsupervised
4
authentication fiber
4
fiber network
4
network physical-layer
4

Similar Publications

A framework for hardware trojan detection based on contrastive learning.

Sci Rep

December 2024

Electronic Engineering College, Heilongjiang University, Harbin, 150080, China.

With the rapid development of the semiconductor industry, Hardware Trojans (HT) as a kind of malicious function that can be implanted at will in all processes of integrated circuit design, manufacturing, and deployment have become a great threat in the field of hardware security. Side-channel analysis is widely used in the detection of HT due to its high efficiency, non-contact nature, and accuracy. In this paper, we propose a framework for HT detection based on contrastive learning using power consumption information in unsupervised or weakly supervised scenarios.

View Article and Find Full Text PDF

Automatic classification of HEp-2 specimens by explainable deep learning and Jensen-Shannon reliability index.

Artif Intell Med

November 2024

Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy; Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, 00133 Rome, Italy.

The Anti-Nuclear Antibodies (ANA) test using Human Epithelial type 2 (HEp-2) cells in the Indirect Immuno-Fluorescence (IIF) assay protocol is considered the gold standard for detecting Connective Tissue Diseases. Computer-assisted systems for HEp-2 image analysis represent a growing field that harnesses the potential offered by novel machine learning techniques to address the classification of HEp-2 images and ANA patterns. In this study, we introduce an innovative platform based on transfer learning with pre-trained deep learning models.

View Article and Find Full Text PDF

Bacterial infection is a crucial factor resulting in public health issues worldwide, often triggering epidemics and even fatalities. The accurate, rapid, and convenient detection of viable bacteria is an effective method for reducing infections and illness outbreaks. Here, an unsupervised learning-assisted and surface acoustic wave-interdigital transducer-driven nano-lens holography biosensing platform is developed for the ultrasensitive and amplification-free detection of viable bacteria.

View Article and Find Full Text PDF

Confident learning-based Gaussian mixture model for leakage detection in water distribution networks.

Water Res

October 2023

College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Leakage detection in the water distribution system not only helps to reduce water waste but also decreases the risk of drinking water pollution. To reduce reliance on hardware devices and enable real-time detection, the water utilities are transitioning towards the data-driven based approach that relies on the analysis of the flow and pressure data collected from the supervisory control and data acquisition (SCADA) system. Due to the lack of leakage data, most of these methods are unsupervised methods that rely heavily on assumptions about the distribution of anomalies; whereas, the water utility's repair records contain much valid information about the leakage and normal characteristics.

View Article and Find Full Text PDF

Unsupervised spike sorting, a vital processing step in real-time brain-implantable microsystems, is faced with the prominent challenge of managing nonstationarity in neural signals. In long-term recordings, spike waveforms gradually change and new source neurons are likely to become activated. Adaptive spike sorters combined with on-implant training units effectively process the nonstationary signals at the cost of high hardware resource utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!