Graph Spatio-Temporal Networks for Manufacturing Sales Forecast and Prevention Policies in Pandemic Era.

Comput Ind Eng

Institute of Manufacturing Information and Systems, National Cheng Kung University, Tainan City 701, Taiwan.

Published: June 2023

Worldwide manufacturing industries are significantly affected by COVID-19 pandemic because of their production characteristics with low-cost country sourcing, globalization, and inventory level. To analyze the correlated time series, spatial-temporal model becomes more attractive, and the graph convolution network (GCN) is also commonly used to provide more information to the nodes and its neighbors in the graph. Recently, attention-adjusted graph spatio-temporal network (AGSTN) was proposed to address the problem of pre-defined graph in GCN by combining multi-graph convolution and attention adjustment to learn spatial and temporal correlations over time. However, AGSTN may show potential problem with limited small non-sensor data; particularly, convergence issue. This study proposes several variants of AGSTN and applies them to non-sensor data. We suggest data augmentation and regularization techniques such as edge selection, time series decomposition, prevention policies to improve AGSTN. An empirical study of worldwide manufacturing industries in pandemic era was conducted to validate the proposed variants. The results show that the proposed variants significantly improve the prediction performance at least around 20% on mean squared error (MSE) and convergence problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299845PMC
http://dx.doi.org/10.1016/j.cie.2023.109413DOI Listing

Publication Analysis

Top Keywords

graph spatio-temporal
8
prevention policies
8
pandemic era
8
worldwide manufacturing
8
manufacturing industries
8
time series
8
non-sensor data
8
proposed variants
8
graph
5
spatio-temporal networks
4

Similar Publications

A Bayesian Multivariate Model With Temporal Dependence on Random Partition of Areal Data for Mosquito-Borne Diseases.

Stat Med

February 2025

Departamento de Estadística, Pontificia Universidad Católica de Chile, Santiago, Chile.

More than half of the world's population is exposed to mosquito-borne diseases, leading to millions of cases and hundreds of thousands of deaths every year. Analyzing this type of data is complex and poses several interesting challenges, mainly due to the usually vast geographic area involved, the peculiar temporal behavior, and the potential correlation between infections. Motivation for this work stems from the analysis of tropical disease data, namely, the number of cases of dengue and chikungunya, for the 145 microregions in Southeast Brazil from 2018 to 2022.

View Article and Find Full Text PDF

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

Synergistic integration of brain networks and time-frequency multi-view feature for sleep stage classification.

Health Inf Sci Syst

December 2025

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.

For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.

View Article and Find Full Text PDF

Traffic flow prediction is a pivotal element in Intelligent Transportation Systems (ITSs) that provides significant opportunities for real-world applications. Capturing complex and dynamic spatio-temporal patterns within traffic data remains a significant challenge for traffic flow prediction. Different approaches to effectively modeling complex spatio-temporal correlations within traffic data have been proposed.

View Article and Find Full Text PDF

Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM.

Sensors (Basel)

December 2024

College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.

Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!