This study develops a novel double-loop contraction and value sorting selection-based shrinkage frog-leaping algorithm (double-contractive cognitive random field [DC-CRF]) to mitigate the interference of complex salts and ions in seawater on the ultraviolet-visible (UV-Vis) absorbance spectra for chemical oxygen demand (COD) quantification. The key innovations of DC-CRF are introducing variable importance evaluation via value to guide wavelength selection and accelerate convergence; a double-loop structure integrating random frog (RF) leaping and contraction attenuation to dynamically balance convergence speed and efficiency. Utilizing seawater samples from Jiaozhou Bay, DC-CRF-partial least squares regression (PLSR) reduced the input variables by 97.5% after 1,600 iterations relative to full-spectrum PLSR, RF-PLSR, and CRF-PLSR. It achieved a test of 0.943 and root mean square error of 1.603, markedly improving prediction accuracy and efficiency. This work demonstrates the efficacy of DC-CRF-PLSR in enhancing UV-Vis spectroscopy for rapid COD analysis in intricate seawater matrices, providing an efficient solution for optimizing seawater spectra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2024.101 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!