From skin sensitizers to wastewater: the unknown photo-deactivation process of low-lying excited states of isothiazolinones. A non-adiabatic dynamics investigation.

Phys Chem Chem Phys

Grupo de Química Teórica, Universidade Federal do Rio Grande do Sul - Instituto de Química, Avenida Bento Gonçalves 9500, CP 15003, CEP 91501970, Porto Alegre, Brazil.

Published: April 2024

Isothiazolinones represent a class of heterocyclic compounds widely used in various applications, including as biocides in cosmetics, detergents, and paints, as well as in industrial wastewater treatment. Indeed, the presence of isothiazolinones in the environment and their associated potential health hazards have raised significant concerns. In this study, a non-adiabatic dynamics investigation was conducted using state-of-the-art methodologies to explore the photochemistry of isothiazolinones. A simplified model, isothiazol-3()-one (ISO), was employed to represent this compound class. The study validated the model and demonstrated that ISO can return to its ground state through the cleavage of the S-N or S-C bonds, with no significant energy barrier observed. Non-adiabatic dynamics simulations provided insights into the time scales and detailed processes of isothiazolinone photodissociation. The preferred route for deactivation was found to be the cleavage of the S-N bond. This research enhances our understanding of the photodeactivation processes of isothiazolinones and their potential environmental impact.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00998cDOI Listing

Publication Analysis

Top Keywords

non-adiabatic dynamics
12
dynamics investigation
8
cleavage s-n
8
isothiazolinones
5
skin sensitizers
4
sensitizers wastewater
4
wastewater unknown
4
unknown photo-deactivation
4
photo-deactivation process
4
process low-lying
4

Similar Publications

Size Effect on Ultrafast Dynamics of the Photoexcited Be Electron in Be@C (2 = 60, 70, and 80).

J Phys Chem Lett

January 2025

MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

The ultrafast excited-state dynamics of endohedral fullerenes are crucial in their photophysical and photochemical processes when they are employed as photovoltaic devices, photocatalytic devices, and single-molecule devices. In this study, by employing the non-adiabatic molecular dynamics simulations based on the time-dependent Kohn-Sham (TD-KS) method, we theoretically studied the size effect on ultrafast excited-state decay dynamics of the photoexcited Be electron in endohedral fullerenes Be@C (2 = 60, 70, and 80). These excited-state decay dynamics, which involve the charge-transfer process, occur in an ultrafast time scale of about 3 ps.

View Article and Find Full Text PDF

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

Single-Atom-Induced Hybridization States Promote the Direct Trapping of Hot Carriers by Reactants for Photocatalysis.

J Phys Chem Lett

January 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.

Single-atom manipulation has emerged as an effective strategy for enhancing the photocatalytic efficiency. However, the mechanism of photogenerated carrier dynamics under single-atom modulation remains unclear. Combining first-principles calculations and non-adiabatic molecular dynamics simulations, we systematically studied carrier transfer and recombination in the oxygen reduction reaction of single-atom-doped CN systems.

View Article and Find Full Text PDF

Various photoactive molecules contain motifs built on aza-aromatic heterocycles, although a detailed understanding of the excited state photophysics and photochemistry in such systems is not fully developed. To help address this issue, the non-adiabatic dynamics operating in azanaphthalenes under hexane solvation was studied following 267 nm excitation using ultrafast transient absorption spectroscopy. Specifically, the species quinoline, isoquinoline, quinazoline, quinoxaline, 1,6-naphthyridine, and 1,8-naphthyridine were investigated, providing a systematic variation in the relative positioning of nitrogen heteroatom centres within a bicyclic aromatic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!