AI Article Synopsis

  • Overexpression of BnaC02.TPS8 in Arabidopsis enhances anthocyanin levels, essential for protecting photosynthetic tissues from stress caused by low nitrogen and high sucrose.
  • The study shows that BnaC02.TPS8 impacts carbon and nitrogen metabolism, resulting in increased T6P levels, improved carbon-to-nitrogen ratios, and enhanced storage of starch and sucrose.
  • Additionally, BnaC02.TPS8 interacts with other TPS proteins, influencing gene expression related to flavonoid biosynthesis and increasing the overall accumulation of metabolites under conditions of low nitrogen.

Article Abstract

Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-024-04404-3DOI Listing

Publication Analysis

Top Keywords

anthocyanin accumulation
20
low high
16
high sucrose
16
overexpression bnac02tps8
12
low
9
sensitivity low
8
low nitrogen
8
high sucrose-induced
8
sucrose-induced anthocyanin
8
sucrose levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!