Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms O and O in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA O sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to O, due to the different phosphate orientations in A-form double helical RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00629 | DOI Listing |
Compr Psychoneuroendocrinol
February 2025
Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, Mailing address: P.O. Box 26170 Greensboro, NC, 27402-6170, USA.
Background: Previous studies have identified links between fluid intake, hydration related hormones and cortisol measured at one timepoint but have not considered how hydration may influence cortisol dynamics throughout the day. This study assessed associations between hydration status (copeptin, urinary osmolality, urine volume) and habitual fluid intake with cortisol dynamics.
Methods: The day before (DB) a 6-h laboratory visit, 29 male participants (age, 23±4y; BMI, 25.
Exp Physiol
January 2025
Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.
Fenestrated/branched endovascular aortic repair emerges as the primary therapeutic modality for intricate aortic pathologies encompassing the paravisceral and thoracoabdominal segments, where bridging stent grafts (BSGs) play a vital role in linking the primary aortic endograft with target vessels. Bridging stent grafts can be categorized mainly into self-expanding stent grafts (SESGs) and balloon-expandable stent grafts (BESGs). Physiological factors significantly influence post-complex endovascular aortic repair BSG behaviour, impacting clinical outcomes of SESGs and BESGs in different but overlapping ways.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!