Over the past decade, single-cell transcriptomics has significantly evolved and become a standard laboratory method for simultaneous analysis of gene expression profiles of individual cells, allowing the capture of cellular diversity. In order to overcome limitations posed by difficult-to-isolate cell types, an alternative approach aiming at recovering single nuclei instead of intact cells can be utilized for sequencing, making transcriptome profiling of individual cells universally applicable. These techniques have become a cornerstone in the study of brain organoids, establishing them as models of the developing human brain. Leveraging the potential of single-cell and single-nucleus transcriptomics in brain organoid research, this protocol presents a step-by-step guide encompassing key procedures such as organoid dissociation, single-cell or nuclei isolation, library preparation and sequencing. By implementing these alternative approaches, researchers can obtain high-quality datasets, enabling the identification of neuronal and non-neuronal cell types, gene expression profiles, and cell lineage trajectories. This facilitates comprehensive investigations into cellular processes and molecular mechanisms shaping brain development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66225 | DOI Listing |
Mater Today Bio
February 2025
Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years.
View Article and Find Full Text PDFLab Invest
January 2025
Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:
PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe "Físico" 17, 35016 Las Palmas de Gran Canaria, Spain.
In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany.
Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes.
View Article and Find Full Text PDFClin Exp Metastasis
January 2025
Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway.
The blood-brain barrier and the distinct brain immunology provide challenges in translating commonly used chemotherapeutics to treat intracranial tumors. Previous reports suggest anti-tumoral effects of antipsychotics, encouraging investigations into potential treatment effects of neuroleptics on brain metastases. For the first time, the therapeutic potential of the antipsychotic drug clozapine in treating melanoma brain metastases (MBM) was investigated using three human MBM cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!