Brown adipose tissue (BAT)-mediated thermogenesis plays an important role in the regulation of metabolism, and its morphology and function can be greatly impacted by environmental stimuli in mice and humans. Currently, murine interscapular BAT (iBAT), which is located between two scapulae in the upper dorsal flank of mice, is the main BAT depot used by research laboratories to study BAT function. Recently, a few previously unknown BAT depots were identified in mice, including one analogous to human supraclavicular brown adipose tissue. Unlike iBAT, murine supraclavicular brown adipose tissue (scBAT) is situated in the intermediate layer of the neck and thus cannot be accessed as readily. To facilitate the study of newly identified mouse scBAT, presented herein is a protocol detailing the steps to dissect intact scBAT from postnatal and adult mice. Due to scBAT's small size relative to other adipose depots, procedures have been modified and optimized specifically for processing scBAT. Among these modifications is the use of a dissecting microscope during tissue collection to increase the precision and homogenization of frozen scBAT samples to raise the efficiency of subsequent qPCR analysis. With these optimizations, the identification of, morphological appearance of, and molecular characterization of the scBAT can be determined in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614390 | PMC |
http://dx.doi.org/10.3791/66475 | DOI Listing |
Commun Biol
January 2025
The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Metabolic alterations are related to tumorigenesis and other age-related diseases that are accelerated by "Westernized" diets. In fact, hypercaloric nutrition is associated with an increased incidence of cancers and faster aging. Conversely, lifespan-extending strategies, such as caloric restriction, impose beneficial effects on both processes.
View Article and Find Full Text PDFNutrients
December 2024
Department of Medicine and Health Sciences "V.Tiberio", University of Molise, 86100 Campobasso, Italy.
Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
World-Class Scientific Center "Center for Personalized Medicine", Almazov National Medical Research Centre, 197341 St. Petersburg, Russia.
The failure of the fight against obesity makes us turn to new goals in its treatment. Now, brown adipose tissue has attracted attention as a promising target for the treatment of obesity and associated metabolic disorders such as insulin resistance, dyslipidemia, and glucose tolerance disorders. Meanwhile, the expansion of our knowledge has led to awareness about two rather different subtypes: classic brown and beige (inducible brown) adipose tissue.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.
Background/objectives: Brown adipose tissue (BAT) plays a crucial role in energy expenditure and thermoregulation and has thus garnered interest in the context of metabolic diseases. Segmentation in medical imaging is time-consuming and prone to inter- and intra-operator variability. This study aims to develop an automated BAT segmentation method using the nnU-Net deep learning framework, integrated into the TotalSegmentator software, and to evaluate its performance in a large cohort of patients with lymphoma.
View Article and Find Full Text PDFBiomolecules
December 2024
Educación Superior, Centro de Estudios, "Justo Sierra", Surutato, Badiraguato 80600, Mexico.
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!