Light-sheet microscopy (LSM) plays a pivotal role in comprehending the intricate three-dimensional (3D) structure of the heart, providing crucial insights into fundamental cardiac physiology and pathologic responses. We hereby delve into the development and implementation of the LSM technique to elucidate the micro-architecture of the heart in mouse models. The methodology integrates a customized LSM system with tissue clearing techniques, mitigating light scattering within cardiac tissues for volumetric imaging. The combination of conventional LSM with image stitching and multiview deconvolution approaches allows for the capture of the entire heart. To address the inherent trade-off between axial resolution and field of view (FOV), we further introduce an axially swept light-sheet microscopy (ASLM) method to minimize out-of-focus light and uniformly illuminate the heart across the propagation direction. In the meanwhile, tissue clearing methods such as iDISCO enhance light penetration, facilitating the visualization of deep structures and ensuring a comprehensive examination of the myocardium throughout the entire heart. The combination of the proposed LSM and tissue clearing methods presents a promising platform for researchers in resolving cardiac structures in rodent hearts, holding great potential for the understanding of cardiac morphogenesis and remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027943 | PMC |
http://dx.doi.org/10.3791/66707 | DOI Listing |
Front Plant Sci
January 2025
College of Agronomy, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.
View Article and Find Full Text PDFJID Innov
March 2025
Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
With the goal of studying skin wound healing and testing new drug treatments to enhance wound healing in rodent models, there is a clear need for improved splinting techniques to increase surgical efficiency and support routine wound monitoring. Splinted wound healing models humanize wound healing in rodents to prevent contraction and instead heal through granulation tissue deposition, increasing the relevance to human wound healing. Current technologies require suturing and heavy wrapping, leading to splint failure and cumbersome monitoring of the wound.
View Article and Find Full Text PDFJBJS Essent Surg Tech
May 2024
Radboud University Medical Center, Nijmegen, The Netherlands.
Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington. Electronic address:
Physiologically based pharmacokinetic (PBPK) models of small molecules have become mainstream in drug development and in academic research. The use of PBPK models is continuously expanding, with the majority of work now focusing on predictions of drug-drug interactions, drug-disease interactions, and changes in drug disposition across lifespan. Recently, publications that use PBPK modeling to predict drug disposition during pregnancy and in organ impairment have increased reflecting the advances in incorporating diverse physiologic changes into the models.
View Article and Find Full Text PDFEBioMedicine
January 2025
KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium.
Background: Sampling the air in indoor congregate settings, where respiratory pathogens are ubiquitous, may constitute a valuable yet underutilised data source for community-wide surveillance of respiratory infections. However, there is a lack of research comparing air sampling and individual sampling of attendees. Therefore, it remains unclear how air sampling results should be interpreted for the purpose of surveillance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!