Current density imaging is helpful for discovering interesting electronic phenomena and understanding carrier dynamics, and by combining pressure distributions, several pressure-induced novel physics may be comprehended. In this work, noninvasive, high-resolution two-dimensional images of the current density and pressure gradient for graphene ribbon and BN-graphene-BN devices are explored using nitrogen-vacancy (NV) centers in diamond under high pressure. The two-dimensional vector current density is reconstructed by the vector magnetic field mapped by the near-surface NV center layer in the diamond. The current density images accurately and clearly reproduce the complicated structure and current flow of graphene under high pressure. Additionally, the spatial distribution of the pressure is simultaneously mapped, rationalizing the nonuniformity of the current density under high pressure. The current method opens a significant new avenue to investigate electronic transport and conductance variations in two-dimensional materials and electrical devices under high pressure as well as for nondestructive evaluation of semiconductor circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c00780 | DOI Listing |
JAMA Ophthalmol
January 2025
The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Importance: While urban counties maintain higher densities of ophthalmologists than rural counties, the geographic distribution of ophthalmic surgical subspecialists has not yet been elucidated. A potential workforce discrepancy may impact the burden of care faced by rural surgeons.
Objective: To assess the geographic distribution of the ophthalmic subspecialist surgeon workforce and evaluate factors associated with practicing in rural areas.
Environ Monit Assess
January 2025
Forest Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Türkiye.
Revealing the status of forests is important for sustainable forest management. The basis of the concept lies in meeting the needs of future generations and today's generations in the management of forests. The use of remote-sensing (RS) technologies and geographic information systems (GIS) techniques in revealing the current forest structure and in long-term planning of forest areas with multipurpose planning techniques is increasing day by day.
View Article and Find Full Text PDFPhytopathology
January 2025
Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, shenyang, China;
Pine wilt disease has caused significant damage to China's ecological and financial resources. To prevent its further spread across the country, proactive control measures are necessary. Given the low accuracy of traditional models, we have employed an enhanced LightGBM model to predict the development trend of pine wilt disease in China.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.
Proton exchange membrane fuel cells (PEMFCs) are developing into very meaningful clean energy to fundamentally address environmental pollution. Among which the most studied Nafion series membranes are limited under large-scale use, and some strong oxidizing groups such as hydrogen peroxide will attack the structure of Nafion, shortening the lifespan of PEMFCs. Therefore, it is crucial to develop a proton-conductive material with strong stability and broad application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!