Succinate dehydrogenase (SDH) is one of the most important molecular targets for the development of novel fungicides. With the emerging problem of resistance in plant fungal pathogens, novel compounds with high fungicidal activity need to be developed, but the study of chiral pesticides for the inhibition of highly destructive plant pathogens has been rarely reported in recent years. Therefore, a series of novel chiral isoxazoline-benzofuran-sulfonamide derivatives were designed to investigate potential novel antifungal molecules. The chiral target compound was cultured as a single crystal and confirmed using X-ray diffraction. All the target compounds were tested for antifungal activity, and compounds , , , and were found to have significant antifungal effects against with EC values of 0.42 mg/L, 0.33 mg/L, 0.37 mg/L, and 0.40 mg/L, respectively, which were superior to the commercial fungicide fluopyram (EC = 0.47 mg/L). The IC value of compound against the SDH of was 0.63 mg/mL, which was further demonstrated by enzyme activity assays. Scanning electron microscopy showed that had a significant inhibitory effect on . In addition, the fluorescence quenching analysis assay indicated that compound had a similar effect with the positive control fluopyram. Molecular docking exhibited that target compounds with chiral configuration had better affinity than racemic configuration, and possessed stronger action than fluopyram, which was in keeping with the test results. These results would provide a basis and reference for the development of novel chiral fungicides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c05730DOI Listing

Publication Analysis

Top Keywords

novel chiral
12
antifungal activity
8
molecular docking
8
chiral isoxazoline-benzofuran-sulfonamide
8
isoxazoline-benzofuran-sulfonamide derivatives
8
development novel
8
target compounds
8
novel
6
chiral
6
mg/l
5

Similar Publications

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

Aiming at the construction of novel platforms with excellent performances in both circularly polarized photoluminescence (CP-PL) and electrochemiluminescence (CP-ECL), a new family of pyrenophanes with rigidly locked pyrene dimers and varied bridges has been designed and synthesized. Attributed to densely packed pyrene excimers, the resultant pyrenophanes revealed tunable bridge-dependent emission behaviors, as investigated by femtosecond time-resolved transient absorption spectroscopy. More importantly, all these planar chiral pyrenophanes display strong CP-PL with large dissymmetry factor (gPL) values up to 0.

View Article and Find Full Text PDF

Chiral Recognition of Butylone by Methylated β-Cyclodextrin Inclusion Complexes: Molecular Calculations and Two-Level Factorial Designs.

ACS Omega

January 2025

School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

The integration of molecular docking and AM1 calculations has elucidated the complexation behavior of butylone enantiomers with methylated β-cyclodextrin derivatives. Our study reveals that butylone can adopt two distinct conformations within the β-cyclodextrin cavity, with one conformation being preferentially stabilized due to its favorable binding energy. This conformation preference is influenced by the methylation at the O2, O3, and O6 positions of β-cyclodextrin, which significantly affects complex stability and solvation properties.

View Article and Find Full Text PDF

Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection.

Adv Mater

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.

View Article and Find Full Text PDF

The development of chirality descriptors for quantitative chirality structure-activity relationship (QCSAR) modeling has always attracted attention, owing to the importance of chiral molecules in pharmaceutical, agriculture, food, and fragrance industries, and environmental toxicology. The utility of a multidimensional space of novel relative chirality indices (RCIs) in the QCSAR modeling of twenty CCR2 antagonists is reported upon in this paper. The numerical characterization of chirality by the RCI approach gives a large pool of chirality descriptors with different degrees of mutual correlation (the correlation coefficient among the computed descriptors varied from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!