AI Article Synopsis

  • The Obese Taste Bud (OTB) Study aims to explore the relationship between taste perception, taste cell health, and obesity, using a cohort of participants from the University of Leipzig.
  • Participants are assessed through various tests including taste and smell evaluations, body measurements, and collection of biological samples, with follow-up on weight loss interventions.
  • Initial results suggest that metabolic factors, diet, and age may significantly influence taste perception, with the study intending to enhance understanding of how these elements contribute to obesity.

Article Abstract

Aims: Taste modifies eating behaviour, impacting body weight and potentially obesity development. The Obese Taste Bud (OTB) Study is a prospective cohort study launched in 2020 at the University of Leipzig Obesity Centre in cooperation with the HI-MAG Institute. OTB will test the hypothesis that taste cell homeostasis and taste perception are linked to obesity. Here, we provide the study design, data collection process and baseline characteristics.

Materials And Methods: Participants presenting overweight, obesity or normal weight undergo taste and smell tests, anthropometric, and taste bud density (TBD) assessment on Day 1. Information on physical and mental health, eating behaviour, physical activity, and dental hygiene are obtained, while biomaterial (saliva, tongue swap, blood) is collected in the fasted state. Further blood samples are taken during a glucose tolerance test. A stool sample is collected at home prior to Day 2, on which a taste bud biopsy follows dental examination. A subsample undergoes functional magnetic resonance imaging while exposed to eating-related cognitive tasks. Follow-up investigations after conventional weight loss interventions and bariatric surgery will be included.

Results: Initial results show that glycated haemoglobin levels and age are negatively associated with TBD, while an unfavourable metabolic profile, current dieting, and vegan diet are related to taste perception. Olfactory function negatively correlates with age and high-density lipoprotein cholesterol.

Conclusion: Initial findings suggest that metabolic alterations are relevant for taste and smell function and TBD. By combining omics data from collected biomaterial with physiological, metabolic and psychological data related to taste perception and eating behaviour, the OTB study aims to strengthen our understanding of taste perception in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dom.15563DOI Listing

Publication Analysis

Top Keywords

taste bud
16
taste perception
16
eating behaviour
12
taste
11
obese taste
8
study design
8
otb study
8
taste smell
8
study
6
obesity
5

Similar Publications

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

J Neurochem

January 2025

Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.

View Article and Find Full Text PDF

Aim: Gustatory function plays a fundamental role in various aspects related to nutrition and health, and the decline in taste perception can result in a series of adverse consequences. This is expected with aging due to a decrease in taste buds and other conditions, leading to systemic and oral diseases. We aimed to compare taste sensitivity in the elderly population vs.

View Article and Find Full Text PDF

The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies.

Int J Mol Sci

November 2024

Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan.

Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds.

View Article and Find Full Text PDF

Vertebrates' tongues reflect part of their adaptations to diverse feeding strategies, the types of food items they eat, and the environments where they live. Our contribution was to analyze the macro- and microscopic morphology of the tongues of two porpoise species ( and ; juveniles and adults), whose biology is little known. Macroscopic and microscopic studies (conventional histology, scanning electron microscopy, immunohistochemistry, and morphometry) were performed.

View Article and Find Full Text PDF

Taste bud cells in the tongue transduce taste information from chemicals in food and transmit this information to gustatory neurons in the geniculate ganglion that innervate taste buds. The peripheral taste system is a dynamic environment where taste bud cells are continuously replaced, but further understanding of this phenomenon has been limited by the inability to directly observe this process. To overcome this challenge, we combined chronic in vivo two-photon laser scanning microscopy with genetic labeling of gustatory neurons and taste buds to observe how cells within the taste bud change over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!