Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Extracellular vesicles (EVs) have emerged as a captivating field of study in molecular biology with diverse applications in therapeutics. These small membrane-bound structures, released by cells into the extracellular space, play a vital role in intercellular communication and hold immense potential for advancing medical treatments. EVs, including exosomes, microvesicles, and apoptotic bodies, are classified based on size and biogenesis pathways, with exosomes being the most extensively studied. The aim of this study was to examine the molecular secretory pathway of exosomes and to discuss the medical applications of exosomes and the methods for employing them in laboratory models. The therapeutic potential of EVs has garnered significant attention. Their unique properties, such as stability, biocompatibility, and capacity to traverse biological barriers, make them promising vehicles for targeted drug delivery. By engineering EVs to carry specific cargo molecules, such as therapeutic proteins, small interfering Ribonucleic Acid (RNAs) (siRNAs), or anti-cancer drugs, researchers can enhance drug stability and improve their targeted delivery to specific cells or tissues. This approach has the potential to minimize off-target effects and increase therapeutic efficacy, offering a more precise and effective treatment strategy. EVs represent a captivating and rapidly evolving field with significant therapeutic implications. Their role in intercellular communication, targeted drug delivery, and regenerative medicine makes them valuable tools for advancing medical treatments. As our understanding of EV biology and their therapeutic applications continues to expand, we can expect remarkable advancements that will revolutionize the field of medicine and lead to more personalized and effective therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007590 | PMC |
http://dx.doi.org/10.62347/QPAG5693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!