Stem cell spheroids are rapidly becoming essential tools for a diverse array of applications ranging from tissue engineering to 3D cell models and fundamental biology. Given the increasing prominence of biotechnology, there is a pressing need to develop more accessible, efficient, and reproducible methods for producing these models. Various techniques such as hanging drop, rotating wall vessel, magnetic levitation, or microfluidics have been employed to generate spheroids. However, none of these methods facilitate the easy and efficient production of a large number of spheroids using a standard 6-well plate. Here, we present a novel method based on pellet culture (utilizing U-shaped microstructures) using a silicon mold produced through 3D printing, along with a detailed and illustrated manufacturing protocol. This technique enables the rapid production of reproducible and controlled spheroids (for 1× 10 cells, spheroids = 130 ± 10 μm) from human induced pluripotent stem cells (hIPSCs) within a short time frame (24 h). Importantly, the method allows the production of large quantities (2 × 10 spheroids for 1 × 10 cells) in an accessible and cost-effective manner, thanks to the use of a reusable mold. The protocols outlined herein are easily implementable, and all the necessary files for the method replication are freely available. Key features • Provision of 3D mold files (STL) to produce silicone induction device of spheroids using 3D printing. • Cost-effective, reusable, and autoclavable device capable of generating up to 1.2 × 10 spheroids of tunable diameters in a 6-well plate. • Spheroids induction with multiple hIPSC cell lines. • Robust and reproducible production method suitable for routine laboratory use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006805 | PMC |
http://dx.doi.org/10.21769/BioProtoc.4965 | DOI Listing |
Biomater Res
January 2025
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Microsc Res Tech
January 2025
Faculty of Science, Department of Molecular Biology and Genetics, Pamukkale University, Denizli, Türkiye.
This study investigates the pollen morphology of 13 taxa of Turkish Gentiana using a statistical approach, contributing to their taxonomy. The aim is to elucidate the palynological characteristics of the taxa and to reveal their contributions to the systematic understanding of the genus Gentiana. The pollen grains are monad, radially symmetrical, isopolar, and tricolporate.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter disease characterized by axonal and glial injury. Although its clinical characteristics have been described in case reports, the prevalence of CSF1R mutations in clinically suspected ALSP cases remains unclear. Herein, we analysed the frequency of CSF1R mutations in patients with probable or possible ALSP and describe the genetic, clinical, radiological, and pathological findings of ALSP cases in individuals of Korean ancestry.
View Article and Find Full Text PDFSLAS Discov
January 2025
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:
Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!