The addition of mammalian cell culture medium impacts nanoparticle toxicity in zebrafish.

Toxicol Rep

Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, 28645 East Hwy 34, Corvallis, OR 97333, USA.

Published: June 2024

Engineered nanomaterials (ENMs) are ubiquitous in contemporary applications, yet their environmental and human health impacts remain inadequately understood. This study addresses the challenge of identifying potential risks associated with ENM exposure by highlighting the significant variability in existing research methodologies. Without a systematic collection of toxicological data that encompasses standardized materials, relevant platforms, and assays, the task of identifying potential risks linked to ENM exposure becomes an intricate challenge. assessments often use media rich in ionic species, such as RPMI and fetal bovine serum (FBS). Zebrafish embryos, known to develop normally in low-ionic environments, were exposed to Cerium Oxide, Zinc Oxide, and Graphene Oxides in different media at varying concentrations. Here, we discovered that zebrafish embryos tolerated a mix of 80 % RPMI, 2 % FBS, and 1 % antibiotic cocktail. The results revealed that adverse effects observed in zebrafish with certain nanomaterials in Ultra-Pure (UP) water were mitigated in cell culture medium, emphasizing the importance of revisiting previously considered non-toxic materials . The zebrafish results underscore the importance of utilizing a multidimensional platform to gauge the biological activity of nanomaterials accurately.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015449PMC
http://dx.doi.org/10.1016/j.toxrep.2024.04.002DOI Listing

Publication Analysis

Top Keywords

cell culture
8
culture medium
8
identifying potential
8
potential risks
8
enm exposure
8
zebrafish embryos
8
zebrafish
5
addition mammalian
4
mammalian cell
4
medium impacts
4

Similar Publications

The rapid, sensitive, and accurate detection of paralytic shellfish toxins (PSTs), such as saxitoxin (STX), is critical for protecting human health due to the frequent occurrence of toxic red tides. In this work, to address the low affinity of traditional mouse monoclonal antibodies (m-mAbs), rabbit monoclonal antibodies (r-mAbs) against STX were produced by a single B-cell sorting culture and a cross-selection strategy. The r-mAbs showed 100-fold improvement in sensitivity (IC = 0.

View Article and Find Full Text PDF

Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).

View Article and Find Full Text PDF

HBV genotype A has two major subtypes, A1 (commonly in Africa) and A2 (commonly in Europe) with only 4% nucleotide differences. Individuals infected with these two subtypes appear to have different clinical manifestations and virologic features. Whether such a difference results from the virus or host has not been established.

View Article and Find Full Text PDF

The frequency of drug-induced liver injury (DILI) in clinical trials remains a challenge for drug developers despite advances in human hepatotoxicity models and improvements in reducing liver-related attrition in preclinical species. TAK-994, an oral orexin receptor 2 agonist, was withdrawn from phase II clinical trials due to the appearance of severe DILI. Here, we investigate the likely mechanism of TAK-994 DILI in hepatic cell culture systems examined cytotoxicity, mitochondrial toxicity, impact on drug transporter proteins, and covalent binding.

View Article and Find Full Text PDF

Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!