Porous α-FeO nanocarriers: Biosynthesis and gene delivery applications.

Heliyon

Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Published: April 2024

Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention. In this research, hematite green nanocarriers were prepared in one step with rosemary extract. Synthetic nanocarriers were investigated by using XRD (X-ray diffraction analysis), FESEM-EDX (field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy), HR-TEM (high-resolution transmission electron microscopy), VSM (value stream mapping), TGA- DTG (thermal gravimetric analysis-differential thermal analysis), FT-IR (fourier-transform infrared spectroscopy), BET (brunauer-emmett-teller) and BJH (barrett-joyner-halenda) analyses. The cytotoxicity of synthetic nanocarriers was evaluated on HEK-293Tcell lines at concentration of 1-500 μg/ml using MTT method. Finally, targeted transfection of GFP plasmid using green porous particles was performed using an external magnetic field. Biogenic hematite nanoparticles with hexagonal crystal structures have a 3D pile flower-like morphology. The existence of rosemary phytochemicals in the construction of nanoparticles has caused minimal toxicity and high biocompatibility of nanocarriers. Also, TGA studies confirmed the stability of bionic nanoparticles. Superparamagnetic green nanocarriers at concentrations above 500 μg/ml is not toxic to HEK293T cells. The delivery efficiency of the plasmid was optimal at an N/P ratio of 3. Therefore, the porous α-FeO green nanocarriers are non-viral and safe carriers with potential applications in gene therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015384PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28676DOI Listing

Publication Analysis

Top Keywords

green nanocarriers
12
porous α-feo
8
nanocarriers
8
gene delivery
8
synthetic nanocarriers
8
electron microscopy
8
α-feo nanocarriers
4
nanocarriers biosynthesis
4
gene
4
biosynthesis gene
4

Similar Publications

Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation.

View Article and Find Full Text PDF

Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates.

View Article and Find Full Text PDF

A Facile Approach To Develop Ion Pair Micelles Satellited Freshly Derived Neutrophils For Targeted Tumor Therapy.

Adv Healthc Mater

January 2025

Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer.

Int J Nanomedicine

January 2025

State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.

Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.

Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!