In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant with potent efficiencies can be utilized for different biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007848 | PMC |
http://dx.doi.org/10.1021/acsomega.3c08143 | DOI Listing |
Daru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
Nanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Industrial and Information Engineering and Economics, University of L'Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L'Aquila, AQ, Italy.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature.
View Article and Find Full Text PDFMar Drugs
December 2024
Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Materials and Engineering, Ho hai university, Nanjing, 210000, China.
This study explores the potential of DNA hydrogels as a novel approach for diagnosing and treating Oral Squamous Cell Carcinoma (OSCC). In the experiment, DNA hydrogels are synthesized and loaded with Zinc Oxide Nanoparticles (ZnO NPs) and Cisplatin. In vitro experiments evaluated drug delivery efficacy and the effect on cancer cell viability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!