Silk Industry Waste Protein-Derived Sericin Hybrid Nanoflowers for Antibiotics Remediation via Circular Economy.

ACS Omega

TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana 122001, India.

Published: April 2024

Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (HO). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007843PMC
http://dx.doi.org/10.1021/acsomega.3c03367DOI Listing

Publication Analysis

Top Keywords

hybrid nanoflowers
16
peroxidase-like activity
16
sericin hybrid
12
nanoflowers
8
ciprofloxacin degradation
8
sericin
6
hybrid
5
silk industry
4
industry waste
4
waste protein-derived
4

Similar Publications

Water pollution is a critical environmental issue affecting ecosystems and human health worldwide. Contaminants such as heavy metals, dyes, antibiotics, and microplastics enter water bodies from the disposals of industrial, agricultural, and domestic waste. The development of new and advanced technologies for addressing water remediation has turned out to be a dire need.

View Article and Find Full Text PDF

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

A DNA tweezer-actuated nanozyme-enzyme hybrid nanoreactor for pesticide detection.

Biosens Bioelectron

March 2025

State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China. Electronic address:

The construction of a nanozyme-enzyme hybrid cascade system is an effective protocol to optimize the performance of biosensors. Yet, the integration has limitations due to the lack of harmonious collaboration between nanozyme and enzyme. Herein, we have constructed an efficient enzymatic cascade system by utilizing the base complementary pairing and the targeting capability of DNA tweezers to combine DNA-regulated copper nanoflowers (CuNFs) with acetylcholinesterase (AChE).

View Article and Find Full Text PDF

This study presents a novel electrochemical immunosensor for the detection of pepsinogen I, a potential biomarker for gastric cancer, based on a unique PdAgPt/MoSnanocomposite. The key innovation lies in the synergistic combination of trimetallic PdAgPt nanoparticles with MoSnanoflowers, which has not been previously reported for pepsinogen I detection. This hybrid material demonstrates exceptional electron transfer properties and a significantly larger electroactive surface area compared to conventional materials.

View Article and Find Full Text PDF

This study introduces an innovative bioinspired hydrogel scaffold tailored to facilitate the in-situ integration of hybrid nanoflowers (HNFs) into the sensing interface, thereby establishing a versatile dual-mode platform for the sensitive profiling of acetylcholinesterase (AChE) inhibitors, a pivotal aspect in the pursuit of Alzheimer's disease therapeutics. Mimicking the tenacious anchoring of natural tree roots, our design employs magnetic bead imprinting with Strep-Tactin-coated magnetic beads (STMBs) to shape the hydrogel, which is then complemented by the integration of AChE-specific aptamers. This configuration creates a stable and biomimetic environment that nurtures HNF growth, thereby enhancing the binding integrity of HNFs with sensing interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!