Protein quantification is an important tool for a wide range of biological applications. The most common broadscale methods include the Lowry, bicinchoninic acid (BCA), and Coomassie Bradford assays. Despite their wide applicability, the mechanisms of action imply that these methods may not be ideal for large transmembrane proteins due to the proteins' integration in the plasma membrane. Here, we investigate this problem by assessing the efficacy and applicability of these three common protein quantification methods on a candidate transmembrane protein - the Na,K-ATPase (NKA). We compared these methods to an ELISA, which we newly developed and describe here for the quantification of NKA. The use of a relative standard curve allows this ELISA to be easily adapted to other proteins and across the animal kingdom. Our results revealed that the three conventional methods significantly underestimate the concentration of NKA compared to the ELISA. Further, by applying the protein concentrations determined by the different methods to in vitro assays, we found that variation in the resulting data was consistently low when the assay reactions were prepared based on concentrations determined from the ELISA. Thus, when target protein concentrations vary across samples, the conventional quantification methods cannot produce reliable results in downstream applications. In contrast, the ELISA we describe here consistently provides robust results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014622 | PMC |
http://dx.doi.org/10.1101/2024.04.02.587709 | DOI Listing |
Food Chem
January 2025
National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea. Electronic address:
Variations in the proportions of the two major soybean [Glycine max (L.) Merr.] seed globulins, glycinin (11S) and β-conglycinin (7S), significantly affect the nutritional and functional properties of soy-based products, but comprehensive methods for the identification and quantification of individual subunits of these proteins are currently lacking.
View Article and Find Full Text PDFAngiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota;
Clinical metaproteomics reveals host-microbiome interactions underlying diseases. However, challenges to this approach exist. In particular, the characterization of microbial proteins present in low abundance relative to host proteins is difficult.
View Article and Find Full Text PDFUnlabelled: Experimental studies have demonstrated that nutritional changes during development can result in phenotypic changes to mammalian cheek teeth. This developmental plasticity of tooth morphology is an example of phenotypic plasticity. Because tooth development occurs through complex interactions between manifold processes, there are many potential mechanisms which can contribute to a tooth's norm of reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!