Unlabelled: Oxide minerals contained in ultramafic rocks are useful tools to assess the redox conditions of the rock and fluids liberated upon progressive serpentinite dehydration during subduction, as these minerals contain a relevant redox-sensitive element, iron. Previous studies have revealed that magnetite predominates across the antigorite-out reaction. However, the fate of magnetite and other oxides at higher pressure and temperature conditions has remained underexplored. We present a comprehensive petrological and geochemical study of oxide-sulfide-silicate mineral assemblages in metaperidotites beyond antigorite- and chlorite-out reactions (T = 650-850 °C and P = 1-3 GPa). Several ultramafic lenses, covering different bulk rock compositions and extents of oxidation upon oceanic serpentinization, were investigated from the Central Alps, Switzerland. Results point to two endmember scenarios: (i) Most frequently, metaperidotites have olivine with a Mg# of 89-91 (defined as molar Mg/(Mg + Fe) × 100) and contain low oxide modes (0.06-1.41 vol.%), hematite is absent, and redox conditions are weakly oxidized and buffered by orthopyroxene-olivine-magnetite. (ii) Rare occurrence, high olivine Mg# > 94.5 metaperidotites display coexisting hematite and magnetite, high oxide modes (up to 4 vol.%), and redox conditions are hematite-magnetite (HM) buffered (ΔlogfO, of + 3 to + 4). Spinel displays evolving compositions from magnetite over chromite to Al-Cr-spinel, roughly correlating with increasing temperature. Most of the samples buffered by the olivine-orthopyroxene-magnetite assemblage contain coexisting pentlandite ± pyrrhotite, thus identifying stable sulfides beyond antigorite dehydration for these weakly oxidized samples (ΔlogfO, < 2.5). No sulfides were recognized in the highly oxidized sample. The transition of magnetite to chromite at around 700 °C goes along with a shift in fO to lower values. At the prevailing oxygen fugacity in the weakly oxidized metaperidotites sulfur in a coexisting fluid is always present in its reduced form. However, oxidized sulfur can be stable in the dehydration fluids released from highly oxidized serpentinites.
Supplementary Information: The online version contains supplementary material available at 10.1007/s00410-023-02032-w.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008075 | PMC |
http://dx.doi.org/10.1007/s00410-023-02032-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!