Music emotion recognition based on temporal convolutional attention network using EEG.

Front Hum Neurosci

School of Electronic and Information Engineering, Southwest University, Chongqing, China.

Published: March 2024

Music is one of the primary ways to evoke human emotions. However, the feeling of music is subjective, making it difficult to determine which emotions music triggers in a given individual. In order to correctly identify emotional problems caused by different types of music, we first created an electroencephalogram (EEG) data set stimulated by four different types of music (fear, happiness, calm, and sadness). Secondly, the differential entropy features of EEG were extracted, and then the emotion recognition model CNN-SA-BiLSTM was established to extract the temporal features of EEG, and the recognition performance of the model was improved by using the global perception ability of the self-attention mechanism. The effectiveness of the model was further verified by the ablation experiment. The classification accuracy of this method in the valence and arousal dimensions is 93.45% and 96.36%, respectively. By applying our method to a publicly available EEG dataset DEAP, we evaluated the generalization and reliability of our method. In addition, we further investigate the effects of different EEG bands and multi-band combinations on music emotion recognition, and the results confirm relevant neuroscience studies. Compared with other representative music emotion recognition works, this method has better classification performance, and provides a promising framework for the future research of emotion recognition system based on brain computer interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11010638PMC
http://dx.doi.org/10.3389/fnhum.2024.1324897DOI Listing

Publication Analysis

Top Keywords

emotion recognition
20
music emotion
12
music
8
types music
8
features eeg
8
recognition
6
eeg
6
recognition based
4
based temporal
4
temporal convolutional
4

Similar Publications

Background: Cognitive training (CT) has been one of the important non-pharmaceutical interventions that could delay cognitive decline. Currently, no definite CT methods are available. Furthermore, little attention has been paid to the effect of CT on mood and instrumental activities of daily living (IADL).

View Article and Find Full Text PDF

The effects of early-life whisker deprivation on adolescent behavior in C57BL/6J mice.

Brain Res

January 2025

epartment of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China. Electronic address:

Whisker deprivation at different stages of early development results in varied behavioral outcomes. However, there is a notable lack of systematic studies evaluating the specific effects of whisker deprivation from postnatal day 0 (P0) to P14 on adolescent behavioral performance in mice. To investigate these effects, C57BL/6J mice underwent whisker deprivation from P0 to P14 and were subsequently assessed at 5 weeks of age using a battery of tests: motor skills were evaluated using open field test; emotional behavior was evaluated using a series of anxiety- and depression-related behavioral tests; cognitive function was examined via novel location and object recognition tests; and social interactions were analyzed using three-chamber social interaction test.

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Depression Recognition Using Daily Wearable-Derived Physiological Data.

Sensors (Basel)

January 2025

Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.

The objective identification of depression using physiological data has emerged as a significant research focus within the field of psychiatry. The advancement of wearable physiological measurement devices has opened new avenues for the identification of individuals with depression in everyday-life contexts. Compared to other objective measurement methods, wearables offer the potential for continuous, unobtrusive monitoring, which can capture subtle physiological changes indicative of depressive states.

View Article and Find Full Text PDF

A Comprehensive Analysis of a Social Intelligence Dataset and Response Tendencies Between Large Language Models (LLMs) and Humans.

Sensors (Basel)

January 2025

Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

In recent years, advancements in the interaction and collaboration between humans and have garnered significant attention. Social intelligence plays a crucial role in facilitating natural interactions and seamless communication between humans and Artificial Intelligence (AI). To assess AI's ability to understand human interactions and the components necessary for such comprehension, datasets like Social-IQ have been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!