Heparan sulfate proteoglycans (HSPGs) serve as co-receptors for growth factor signaling during development. It is well known that the level and patterns of sulfate groups of heparan sulfate (HS) chains, or HS fine structures, have a major impact on HSPG function. On the other hand, the physiological significance of other structural features of HS, including NS/NA domain organization, remains to be elucidated. A blueprint of the HS domain structures is mainly controlled by HS -deacetylase/-sulfotransferases (NDSTs). To analyze in vivo activities of differentially modified HS, we established two knock-in (KI) strains with the insertion of mouse () or () in the locus of (), the only NDST. In these KI lines, mNDSTs are expressed from the locus, in the level and patterns identical to the endogenous gene. Thus, phenotypes of KI and KI animals reflect the ability of HS structures made by these enzymes to rescue mutation. Remarkably, we found that completely rescued the loss of showed a limited rescue ability, despite a higher level of HS sulfation compared to HS in KI. Our study suggests that independent of sulfation levels, additional HS structural features controlled by NDSTs play key roles during tissue patterning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11011245 | PMC |
http://dx.doi.org/10.1002/pgr2.17 | DOI Listing |
Alzheimers Dement
December 2024
Rensselaer Polytechnic Institute, Troy, NY, USA.
Background: Heparan sulfate (HS) interacts with many important proteins. These interactions are primarily driven by electrostatics, with specificity determined by sulfation patterns. Although 3-O-sulfation is a rare modification in HS, several genome-wide association studies (GWAS) revealed that the Hs3st1 gene, encoding HS-3-O-sulfotransferase-1, is significantly linked to late onset AD risk.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Southwestern Medical Center, Dallas, TX, USA.
Background: The prion model of tau propagation in Alzheimer's Disease predicts that tau seeds are released from cells and taken up by neighboring cells, resulting in spreading of the disease. Our previous work revealed that tau aggregates bind to heparan sulfate proteoglycans (HSPGs) on the cell surface, followed by cellular uptake via macropinocytosis. HSPGs are glycoproteins, consisting of a protein core and decorated with linear glycosaminoglycan (GAG) chains called heparan sulfate (HS) with highly variable sulfation patterns.
View Article and Find Full Text PDFElife
January 2025
Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States.
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Sci Rep
December 2024
Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, D-48149, Münster, Germany.
The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!