Protein structures unravel the signatures and patterns of deep time evolution.

QRB Discov

Independent Researcher, Uppsala, Sweden.

Published: January 2024

The formulation and testing of hypotheses using 'big biology data' often lie at the interface of computational biology and structural biology. The Protein Data Bank (PDB), which was established about 50 years ago, catalogs three-dimensional (3D) shapes of organic macromolecules and showcases a structural view of biology. The comparative analysis of the structures of homologs, particularly of proteins, from different species has significantly improved the in-depth analyses of molecular and cell biological questions. In addition, computational tools that were developed to analyze the 'protein universe' are providing the means for efficient resolution of longstanding debates in cell and molecular evolution. In celebrating the golden jubilee of the PDB, much has been written about the transformative impact of PDB on a broad range of fields of scientific inquiry and how structural biology transformed the study of the fundamental processes of life. Yet, the transforming influence of PDB on one field of inquiry of fundamental interest-the reconstruction of the distant biological past-has gone almost unnoticed. Here, I discuss the recent advances to highlight how insights and tools of structural biology are bearing on the data required for the empirical resolution of vigorously debated and apparently contradicting hypotheses in evolutionary biology. Specifically, I show that evolutionary characters defined by protein structure are superior compared to conventional sequence characters for reliable, data-driven resolution of competing hypotheses about the origins of the major clades of life and evolutionary relationship among those clades. Since the better quality data unequivocally support two primary domains of life, it is imperative that the primary classification of life be revised accordingly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016368PMC
http://dx.doi.org/10.1017/qrd.2024.4DOI Listing

Publication Analysis

Top Keywords

structural biology
12
biology
7
protein structures
4
structures unravel
4
unravel signatures
4
signatures patterns
4
patterns deep
4
deep time
4
time evolution
4
evolution formulation
4

Similar Publications

Announcement: Journal of Structural Biology: X - Paper of the Year.

J Struct Biol X

December 2024

Deparment of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.

View Article and Find Full Text PDF

The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.

View Article and Find Full Text PDF

Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).

View Article and Find Full Text PDF

Marine heatwaves are starting to occur several times a decade, yet we do not understand the effect this has on corals across biological scales. This study combines tissue-, organism-, and community-level analyses to investigate the effects of a marine heatwave on reef-building corals. Adjacent conspecific pairs of coral colonies of and that showed contrasting phenotypic responses (, bleached .

View Article and Find Full Text PDF

Rituximab combined with systemic chemotherapy significantly improves the rate of complete response in B-cell lymphomas. However, acquired rituximab resistance develops in most patients leading to relapse. The mechanisms underlying rituximab resistance are not well-understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!