Using immunotherapy to fight cancer, and specifically, the use of engineered T-cells expressing a chimeric receptor against an antigen found on malignant cells (chimeric antigen receptor, CAR-T cells) constitutes a significant breakthrough in the treatment of the disease. In recent years, several CAR-T therapies have been approved in Europe and the USA, and some are already approved and funded through the national health basket in Israel, for the indications of diffuse large B-cell lymphoma, mantle cell lymphoma and B-cell acute lymphoblastic leukemia, after the failure of at least two lines of treatment. The treatment with CAR-T cells achieves prolonged remissions and even long-term cure of patients who had a very poor prognosis. However, the treatment involves significant side effects, and requires specific expertise in the management of patients both during the period of preparation for cell transplantation, and following the treatment. During the immediate post-infusion period, the most common adverse reactions are cytokine release syndrome (CRS) which stems from the activation of the immune system, and neurological toxicity that can accompany CRS. These effects require close monitoring, grading their severity, and providing anti-cytokine therapy or steroid therapy until control of symptoms is achieved. Later effects can be persistent cytopenias, immune over-activation, and prolonged immune deficiency. Treatments for additional indications and new CAR-T constructs are being developed and will allow more effective and safer treatment. This article summarizes the principles for CAR-T administration that, as currently provided in Israel, include the short- and long-term follow-up of the patients.
Download full-text PDF |
Source |
---|
J Clin Oncol
January 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
Colorectal cancer (CRC) remains a major global health burden, being one of the most prevalent cancers with high mortality rates. Despite advances in conventional treatment modalities, patients with metastatic CRC often face limited options and poor outcomes. Chimeric antigen receptor-T (CAR-T) cell therapy, initially successful in hematologic malignancies, presents a promising avenue for treating solid tumors, including CRC.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Chimeric antigen receptor-transduced T (CAR-T) cell therapy is an effective cell therapy against advanced hematological tumors. However, the use of autologous T cells limits its timely and universal generation. Allogeneic CAR-T cell therapy may be a good alternative as a ready-to-use therapeutic.
View Article and Find Full Text PDFFuture Oncol
January 2025
cKite, a Gilead Company, Santa Monica, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!