Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system's adaptions to low-oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII-driven counteraction of hypoxia-induced inhibition of LR formation in an ABA-dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA-degrading ABA 8'-hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia-induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII-dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14914DOI Listing

Publication Analysis

Top Keywords

arabidopsis root
8
abscisic acid
8
root growth
8
hypoxia
6
root
6
aba
5
hypoxia reshapes
4
reshapes arabidopsis
4
root architecture
4
architecture integrating
4

Similar Publications

Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering.

BMC Plant Biol

January 2025

Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.

View Article and Find Full Text PDF

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization.

Plant Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.

View Article and Find Full Text PDF

Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.

View Article and Find Full Text PDF

ERF114/115/109 are essential for jasmonate-repressed non-canonical JAZ8 activity in JA signaling.

Cell Rep

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Science, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Jasmonate (JA), a key plant hormone, regulates various aspects of plant development and stress responses, primarily through the degradation of canonical jasmonate-ZIM domain (JAZ) proteins by the SCF complex. While JAZ8, a non-canonical JAZ protein lacking the degron signal, has been shown to repress JA responses, the mechanism by which JA inhibits JAZ8 activity remains unclear. Here, we demonstrate that Arabidopsis ethylene response factor 114 (ERF114), ERF115, and ERF109 regulate JA signaling through interacting with JAZ8.

View Article and Find Full Text PDF

The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!