AI Article Synopsis

  • The 15q11-q13 genetic region is crucial for neurodevelopment and exhibits genomic imprinting, where gene expression differs depending on whether the gene is inherited from the mother or the father.
  • Neurodevelopmental disorders like Prader-Willi syndrome and Angelman syndrome arise from the absence of specific genes in this region due to imprinting errors.
  • A genomic study was conducted on a Bangladeshi population to identify pathogenic variants in this region, leading to in-depth clinical evaluations of individuals with suspected neurodevelopmental disorders.

Article Abstract

Background: The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region.

Methods: Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms.

Results: This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome.

Conclusion: Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016631PMC
http://dx.doi.org/10.1002/brb3.3437DOI Listing

Publication Analysis

Top Keywords

15q11-q13 region
16
gene expression
12
deep phenotypic
8
structural variations
8
genomic imprinting
8
parental alleles
8
15q11-q13 duplication
8
type deletion
8
15q11-q13
7
region
6

Similar Publications

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

The 15q11.2q13 chromosomal region is particularly susceptible to chromosomal rearrangements due to low-copy repeats (LCRs) located inside this area. Specific breakpoints (BP1-BP5) that lead to deletions and duplications of variable size have been identified.

View Article and Find Full Text PDF

[Prenatal diagnosis of a fetus with 15q11q13 complex duplication syndrome and a literature review].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

October 2024

Laboratory for Comprehensive Prevention and Treatment of Birth Defects, Ningbo Women & Children's Hospital, Ningbo, Zhejiang 315012, China.

Article Synopsis
  • The study aims to investigate a fetus diagnosed with 15q11q13 complex duplication syndrome, focusing on its clinical features and genetic causes.
  • Clinical data was collected and advanced genetic tests were performed, including karyotyping and exome sequencing, revealing significant chromosomal duplications originating from the mother.
  • Literature review identified 11 similar cases of hexasomy associated with intellectual and developmental challenges, suggesting a pattern of mental retardation and other developmental delays linked to this syndrome.
View Article and Find Full Text PDF

Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain.

Am J Hum Genet

August 2024

Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA. Electronic address:

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown.

View Article and Find Full Text PDF

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!