Given the presence of emerging pollutants at low concentrations in water bodies, which are inevitably affected by background substances during the removal process. In this study, we synthesized molecularly imprinted catalysts (Cu/Ni-MOFs@MIP) based on bimetallic metal-organic frameworks for the targeted degradation of ciprofloxacin (CIP) in advanced oxidation processes (AOPs). The electrostatic interaction and functional group binding of CIP with specific recognition sites on Cu/Ni-MOFs@MIP produced excellent selective recognition (Q was 14.82 mg g), which enabled the active radicals to approach and remove the contaminants faster. Electron paramagnetic resonance (EPR) analysis and quenching experiments revealed the coexistence of ∙OH, SO, and O, with ∙OH dominating the system. Based on experimental and theoretical calculations, the reaction sites of CIP were predicted and the possible degradation pathways and mechanisms of Cu/Ni-MOFs@MIP/PMS systems were proposed. This study opens up a new platform for the targeted removal of target pollutants in AOPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141894 | DOI Listing |
Nanotechnology
December 2024
Chemistry and Biochemistry, North Carolina Central University, North Carolina Central University USA, Durham, 27707-3129, UNITED STATES.
Ciprofloxacin (CIP) is a widely used antibiotic, and its presence in water bodies poses a risk due to its resistance to conventional wastewater treatment processes. The accumulation of such pharmaceuticals can disrupt aquatic ecosystems, harm aquatic life, and contribute to ecological imbalances. Therefore, the degradation of CIP is of immense environmental significance.
View Article and Find Full Text PDFSmall
December 2024
Biomaterials and Sensors Laboratory, Department of Physics, Ch. Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
Z-scheme CeO-TiO@CNT (CTC) heterojunction is fabricated using hydrothermal method and evaluated for removing mixed pollutants (MIX-P) from ciprofloxacin (CPF) and textile contaminations. CTC demonstrated ≈99% removal efficiency against MIX-P under solar irradiation of ≈10 lumens. High removal efficiency of CTC is attributed to reduced bandgap (E), 2.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt.
Pharmaceutical residues, now recognized as a new category of environmental pollutants, have potentially risks to both ecosystems and human health effects. Recently, biosorption has emerged as one of the most promising strategies for managing these pharmaceutical wastes in water. Nevertheless, the environmental impact of the adsorbents presents a challenge to the advancement of this process.
View Article and Find Full Text PDFMetabolomics
December 2024
Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom.
Introduction: Rapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis.
Objectives: The metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR).
Methods: Metabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling.
Bioresour Technol
December 2024
Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan. Electronic address:
The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!