In this study, the BiOBr/rGO nanocomposite photocatalysts are fabricated by a facile solvothermal method. The BiOBr growth on reduced graphene oxide (rGO) sheet could improve BiOBr's photocatalytic activity by increasing its adsorption ability, surface area, and charge carriers' separation efficiency. The prepared nanocomposites were characterized by XRD, Raman, FESEM, EDS, XPS, and UV-visible DRS. The BiOBr/rGO (BRG) nanocomposites showed improved photocatalytic activity for the photodegradation of Rhodamine B (RhB) dye and Tetracycline (TC) under visible light irradiation. Rhodamine B and tetracycline degradation efficiency were about 96% and 73% within 120 min under visible light irradiation. The PL analysis indicates that BiOBr/rGO nanocomposite exhibited maximum separation efficiency of photoinduced charge carriers. The trapping test confirmed that O and h are significant active photodegradation species. The GC-MS spectra detected the two plausible transformation routes of tetracycline degradation. The current work presented a low-cost and facile approach for fabricating Bi-based composites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141934 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFLangmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFInorg Chem
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China.
Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.
View Article and Find Full Text PDFEndocrine
January 2025
Department of Health Management, Chronic Health Management Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
Background: The impact of fatty liver disease on lumbar bone mineral density (BMD) represents an intriguing area of study, particularly in light of established research linking obesity to bone metabolism. However, there remains limited investigation into the correlation between quantifying liver fat content (LFC) and lumbar BMD among overweight and obese populations, particularly within the Chinese demographic. This study aims to accurately quantify LFC and investigate its association with lumbar BMD in overweight or obese individuals.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!