This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season. Results indicated varying RBT concentrations for fresh (Day 0) and aged (Days 1 to 10) sewage contamination scenarios over 10 days. HF183 exhibited the highest RBT concentration (26,600 gene copis (GC)/100 mL) initially but decreased rapidly with aging (2570 to 3120 GC/100 mL on Day 10) depending on the decay rates, while Lachno3 and CrAssphage remained relatively stable. PMMoV, despite lower initial RBT (3920 GC/100 mL), exhibited increased RBT (4700 to 6440 GC/100 mL) with aging due to its slower decay rate compared to HNoV. Sensitivity analysis revealed HNoV concentrations as the most influential parameter. Comparison of marker concentrations in estuarine locations with RBT concentrations showed instances of marker exceedance, suggesting days of potential higher risks. The observed discrepancies between bacterial and viral marker concentrations in EW highlight the need for optimized sample concentration method and simultaneous measurement of multiple markers for enhanced risk predictions. Future research will explore the utility of multiple markers in risk management. Overall, this study contributes to better understanding human health risks in recreational waters, aiding regulators, and water quality managers in effective decision-making for risk prioritization and mitigation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172448DOI Listing

Publication Analysis

Top Keywords

rbt concentrations
20
rbt
9
concentrations
9
site-specific risk-based
8
risk-based threshold
8
threshold rbt
8
concentrations sewage-associated
8
sewage-associated markers
8
rbt concentration
8
decay rates
8

Similar Publications

Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria.

View Article and Find Full Text PDF

A Comparative Study of Phase I and II Hepatic Microsomal Biotransformation of Phenol in Three Species of Salmonidae: Hydroquinone, Catechol, and Phenylglucuronide Formation.

Fishes

July 2024

United States Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Boulevard, Duluth, MN 55804, USA.

The biotransformation of phenol at 11 °C was studied using pre-spawn adult rainbow () (RBT), brook () (BKT), and lake trout () (LKT) hepatic microsomal preparations. The incubations were optimized for time, cofactor concentration, pH, and microsomal protein concentration. Formation of Phase I ring-hydroxylation and Phase II glucuronidation metabolites was quantified using HPLC with dual-channel electrochemical and UV detection.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has attracted widespread attention from researchers as an emerging cancer treatment method. There have been many reports on various types of NIR-II photosensitizers for imaging and treatment of tumor sites. However, there are few reports on the development of NIR-II organic small molecule photosensitizers that have intelligent response to the tumor microenvironment, precise imaging, real-time treatment, and high biocompatibility.

View Article and Find Full Text PDF

This study establishes site-specific risk-based threshold (RBT) concentrations for sewage-associated markers, including Bacteroides HF183 (HF183), Lachnospiraceae Lachno3 (Lachno3), cross-assembly phage (CrAssphage), and pepper mild mottle virus (PMMoV), utilizing quantitative microbial risk assessment (QMRA) for recreational estuarine waters (EW). The QMRA model calculates a RBT concentration corresponding to a selected target illness risk for ingestion of EW contaminated with untreated sewage. RBT concentrations were estimated considering site-specific decay rates and concentrations of markers and reference pathogen (human norovirus; HNoV), aiding in the identification of high-risk days during the swimming season.

View Article and Find Full Text PDF

Cross-species apical microinjected selenomethionine toxicity in embryo-larval fishes.

Sci Total Environ

February 2024

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada. Electronic address:

Selenium (Se) is an essential micronutrient that becomes toxic when exposures minimally exceed those that are physiologically required. Studies on Se contaminated aquatic environments have identified that embryo-larval fishes are at particular risk of Se toxicity, primarily due to maternal Se transfer to developing eggs during oogenesis. This study emulated these exposures in embryo-larval fathead minnow (FHM), rainbow trout (RBT), white sucker (WSu), and white sturgeon (WSt) using embryonic selenomethionine (SeMet) microinjections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!