Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Agriculture and its supply chain pose significant environmental threats. This study employs Life Cycle Assessment (LCA) to explore the environmental impact of fresh bell pepper production and distribution, comparing Urban and Peri-Urban Agriculture (UPA) with Rural Long-Distance Food Supply Systems (RLDFS). Four UPA scenarios (hydroponics, soil-based greenhouse, open-field conventional, and organic) and two RLDFS scenarios (soil-based greenhouse and open-field conventional) are evaluated using SimaPro, incorporating inputs from UPA practitioners and rural farmers. Results reveal an energy demand range of 0.011 to 5.5 kWh/kg eq., with urban greenhouses exhibiting the lowest consumption and hydroponics the highest due to lighting, ventilation, and irrigation. Hydroponics exhibits a global warming potential of 7.24 kg of CO eq·kg, with energy demand contributing over 95 %, surpassing other scenarios by 7-25 times, necessitating reduction for sustainability. RLDFS's environmental impact is dominated by transportation (over 70 %), meanwhile other UPA systems are influenced by irrigation, infrastructure, and fertilizers. Despite challenges, UPA-hydroponics proves to be 1.7 to 4.3 times more land-use-efficient than other scenarios, emphasizing its potential. The study highlights the need to address electricity usage in UPA-hydroponics for carbon footprint reduction. Despite challenges, hydroponics could contribute to sustainable food security, and RLDFS does not significantly lag in environmental performance compared to UPA other than Ozone layer depletion criteria attributed to fossil fuel usage in transportation. These insights offer valuable guidance for urban development and policy formulation, promoting sustainable agricultural practices and supporting policies for agronomic and supply chain sustainability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.172359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!