Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2024.122632 | DOI Listing |
Infect Dis Ther
January 2025
ViiV Healthcare, Madrid, Spain.
Introduction: Dolutegravir (DTG) + lamivudine (3TC) demonstrated high rates of virologic suppression (VS) and low rates of virologic failure (VF), discontinuation, and drug resistance in randomized trials. Real-world evidence can support treatment effectiveness, safety, and tolerability in clinical practice and aid in treatment decisions.
Methods: A systematic literature review (SLR) was conducted to identify studies using DTG + 3TC (January 2013-March 2024).
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!