The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtHO), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtHO and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021975 | PMC |
http://dx.doi.org/10.1016/j.redox.2024.103155 | DOI Listing |
Redox Biol
June 2024
School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada. Electronic address:
The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
April 2022
Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran,Iran.
Background: In Congenital Disorder of Glycosylation (CDG) type Ia, homozygous mutations of the PMM2 gene cause phosphomannomutase 2 dysfunction.
Case Presentation: Herein, a 10-month-old girl, is presented with severe hypotonia, along with inappropriately normal mental status and normal facies. High 2-ketoglutaric acid was detected in her urine, therefore, the diagnosis of 2-Ketoglutarate dehydrogenase complex (KDHC) deficiency was made for this patient.
Proc Natl Acad Sci U S A
October 2015
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065;
Enzymes of central carbon metabolism (CCM) in Mycobacterium tuberculosis (Mtb) make an important contribution to the pathogen's virulence. Evidence is emerging that some of these enzymes are not simply playing the metabolic roles for which they are annotated, but can protect the pathogen via additional functions. Here, we found that deficiency of 2-hydroxy-3-oxoadipate synthase (HOAS), the E1 component of the α-ketoglutarate (α-KG) dehydrogenase complex (KDHC), did not lead to general metabolic perturbation or growth impairment of Mtb, but only to the specific inability to cope with glutamate anaplerosis and nitroxidative stress.
View Article and Find Full Text PDFBiochem Soc Trans
August 2014
*Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk 80-211, Poland.
Intramitochondrial decarboxylation of glucose-derived pyruvate by PDHC (pyruvate dehydrogenase complex) is a principal source of acetyl-CoA, for mitochondrial energy production and cytoplasmic synthetic pathways in all types of brain cells. The inhibition of PDHC, ACO (aconitase) and KDHC (ketoglutarate dehydrogenase complex) activities by neurodegenerative signals such as aluminium, zinc, amyloid β-peptide, excess nitric oxide (NO) or thiamine pyrophosphate deficits resulted in much deeper losses of viability, acetyl-CoA and ATP in differentiated cholinergic neuronal cells than in non-differentiated cholinergic, and cultured microglial or astroglial cell lines. In addition, in cholinergic cells, such conditions caused inhibition of ACh (acetylcholine) synthesis and its quantal release.
View Article and Find Full Text PDFJ Mol Biol
December 1998
Institute of Biochemistry and Molecular Biology, Albert-Ludwig University, Freiburg i.Br., Germany.
Arthrobacter nicotinovorans is a Gram-positive aerobic soil bacterium able to grow on nicotine as its sole source of carbon and nitrogen. The initial steps of nicotine catabolism are catalyzed by nicotine dehydrogenase, the l- and d-specific 6-hydroxynicotine oxidases, and ketone dehydrogenase. The genes encoding these enzymes reside on a 160 kb plasmid, pAO1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!