Circular RNAs (circRNAs) have surfaced as important non-coding RNA molecules in biology. Understanding interactions between circRNAs and RNA-binding proteins (RBPs) is crucial in circRNA research. Existing prediction models suffer from limited availability and accuracy, necessitating advanced approaches. In this study, we propose CRIECNN (Circular RNA-RBP Interaction predictor using an Ensemble Convolutional Neural Network), a novel ensemble deep learning model that enhances circRNA-RBP binding site prediction accuracy. CRIECNN employs advanced feature extraction methods and evaluates four distinct sequence datasets and encoding techniques (BERT, Doc2Vec, KNF, EIIP). The model consists of an ensemble convolutional neural network, a BiLSTM, and a self-attention mechanism for feature refinement. Our results demonstrate that CRIECNN outperforms state-of-the-art methods in accuracy and performance, effectively predicting circRNA-RBP interactions from both full-length sequences and fragments. This novel strategy makes an enormous advancement in the prediction of circRNA-RBP interactions, improving our understanding of circRNAs and their regulatory roles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108466DOI Listing

Publication Analysis

Top Keywords

ensemble convolutional
12
convolutional neural
12
neural network
12
advanced feature
8
feature extraction
8
extraction methods
8
circrna-rbp binding
8
circrna-rbp interactions
8
criecnn
4
criecnn ensemble
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!