Coatless modification of 3D-printed Ti6Al4V implants through tailored Cu ion implantation combined with UV photofunctionalization to enhance cell attachment, osteogenesis and angiogenesis.

Colloids Surf B Biointerfaces

Department of Orthopedics, Peking University Third Hospital, Beijing 100191,  People's Republic of China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, People's Republic of China. Electronic address:

Published: June 2024

The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×10 ions/cm. The implanted Cu enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.113891DOI Listing

Publication Analysis

Top Keywords

ion implantation
12
combined photofunctionalization
8
photofunctionalization enhance
8
bone defects
8
bone
6
3dti
5
coatless modification
4
modification 3d-printed
4
3d-printed ti6al4v
4
ti6al4v implants
4

Similar Publications

Background: It is known that the heavy metals cobalt and chromium are associated with neurotoxicity. Chromium (Cr) and Cobalt (Co) are both components of metal-on-metal (MoM) implants which can be degraded/fragmented and released into the bloodstream. Neurofilament Light Chain (NfL) is a neuron-specific protein that increases in serum following axonal damage.

View Article and Find Full Text PDF

Design of a versatile platform on nanostructured Ti-Mo-Zr alloy surface with photothermal, antibacterial and osteoinductive properties for biomedical application.

Colloids Surf B Biointerfaces

December 2024

School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, PR China; School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 2211189, PR China. Electronic address:

Bacterial infection and inadequate osseointegration represent significant challenges in the application of titanium (Ti)-based bone implants. Surface modification presents a promising strategy to address these obstacles. Taking advantage of silver ions, black phosphorus nanosheets (BPNs) and polydopamine (PDA), this study developed a versatile platform on the surface of Ti-12Mo-10Zr (TMZ) alloy through a multiple surface modification process, including the anodic oxidation treatment of TMZ alloy, the preparation and addition of silver-loaded BPNs (BPNs/Ag), and the coating with PDA.

View Article and Find Full Text PDF

Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.

View Article and Find Full Text PDF

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!