Acetamiprid is a novel nicotinic pesticide widely used in modern agriculture because of its low toxicity and specific biological target properties. The objective of this study was to understand the photolysis pattern of acetamiprid in the water column and elucidate its degradation products and mechanism. It was observed that acetamiprid exhibited different photolysis rates under different light source conditions in pure water, with ultraviolet > fluorescence > sunlight; furthermore, its photolysis half-life ranged from 17.3 to 28.6 h. In addition, alkaline conditions (pH 9.0) accelerated its photolysis rate, which increased with pH. Using gas chromatography-mass spectrometry, five direct photolysis products generated during the exposure of acetamiprid to pure water were successfully separated and identified. The molecular structure of acetamiprid was further analyzed using density functional theory, and the active photodegradation sites of acetamiprid were predicted. The mechanism of the photolytic transformation of acetamiprid in water was mainly related to hydroxyl substitution and oxidation. Based on these findings, a comprehensive transformation pathway for acetamiprid was proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-024-03875-0 | DOI Listing |
Chemosphere
December 2024
Department of Environmental Sciences, University of California, Riverside, CA 92521, USA. Electronic address:
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFToxicol Mech Methods
December 2024
Laboratoire de Nutrition, Pathologie, Agro-Biotechnologie et Santé (NuPABS), Department of biology, Faculty of Natural and Life sciences, Djillali Liabès University, Sidi Bel Abbès, Algeria.
Acetamiprid is a neonicotinoid insecticide used against various insect pests. Serious concerns are emerging regarding their adverse effects on non-target organisms and organs. This study aimed to investigate the mechanistic toxic effect of oral administration of acetamiprid at 21.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Marine College, Shandong University, Weihai 264209, PR China. Electronic address:
A novel imprinted composite nanoprobe for fluorescence turn-on recognition of acetamiprid was fabricated and applied to rapidly and sensitively detect trace-level acetamiprid in seawater. The fluorescent probe was prepared using modified fluorescein isothiocyanate as a response unit to improve the sensitivity of signal transmission. The quantitative analysis of acetamiprid was obtained by measuring fluorescence enhancement efficiency of the probe.
View Article and Find Full Text PDFEnviron Health
November 2024
Natural Resources Defense Council, 20 N Wacker Dr #1600, Chicago, IL, 60606, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!