Global warming can be defined as the detectable increase in average global temperature in the last ten years regarding frequency and intensity. Climate change represents a long-term detectable climatic variability. The climatic system of the earth is disrupted because of the continuous production of greenhouse gases, which raises the risk of the emergence and re-emergence of human pathogens. In this review, we aimed to present the different mechanisms of climate change that increase human/pathogen exposure, introduce the recent concept of disaster microbiology, and discuss the effects of climate change on zoonoses as well as the effects of climate change on antibiotic resistance and human health.
Download full-text PDF |
Source |
---|
Vet Parasitol
January 2025
Laboratório de Quimioterapia Experimental em Parasitologia Veterinária (LQEPV), Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil; Departamento de Parasitologia Animal, Instituto de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
This study investigated the combined effect of trans-anethole, carvacrol and thymol on third-instar larvae of C. hominivorax. For this experiment, third-stage larvae of C.
View Article and Find Full Text PDFCan J Microbiol
January 2025
McGill University, Department of Earth and Planetary Sciences, Montreal, Quebec, Canada;
Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.
View Article and Find Full Text PDFN Z Med J
January 2025
Editor-in-Chief, La Tunisie Médicale.
Science
January 2025
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
Pathways to achieving net zero carbon emissions commonly involve deploying reforestation, afforestation, and bioenergy crops across millions of hectares of land. It is often assumed that by helping to mitigate climate change, these strategies indirectly benefit biodiversity. Here, we modeled the climate and habitat requirements of 14,234 vertebrate species and show that the impact of these strategies on species' habitat area tends not to arise through climate mitigation, but rather through habitat conversion.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
School of Molecular Diagnostics, Prophylaxis, and Nanobiotechnology, ICAR- Indian Institute of Agricultural Biotechnology, Garkhtanga, Ranchi, 834003, Jharkhand, India.
Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!