Artificial antigen-presenting cells (aAPCs) are currently used to manufacture T cells for adoptive therapy in cancer treatment, but a readily tunable and modular system can enable both rapid T cell expansion and control over T cell phenotype. Here, it is shown that microgels with tailored surface biochemical properties can serve as aAPCs to mediate T cell activation and expansion. Surface functionalization of microgels is achieved via layer-by-layer coating using oppositely charged polymers, forming a thin but dense polymer layer on the surface. This facile and versatile approach is compatible with a variety of coating polymers and allows efficient and flexible surface-specific conjugation of defined peptides or proteins. The authors demonstrate that tethering appropriate stimulatory ligands on the microgel surface efficiently activates T cells for polyclonal and antigen-specific expansion. The expansion, phenotype, and functional outcome of primary mouse and human T cells can be regulated by modulating the concentration, ratio, and distribution of stimulatory ligands presented on microgel surfaces as well as the stiffness and viscoelasticity of the microgels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293993 | PMC |
http://dx.doi.org/10.1002/adma.202309860 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!