A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeted delivery of MerTK protein via cell membrane engineered nanoparticle enhances efferocytosis and attenuates atherosclerosis in diabetic ApoE Mice. | LitMetric

Background: Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis.

Results: In this study, we found that diabetic ApoE mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation.

Conclusions:  Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11015613PMC
http://dx.doi.org/10.1186/s12951-024-02463-yDOI Listing

Publication Analysis

Top Keywords

diabetic apoe
16
apoe mice
16
cell membrane
12
mertk macrophages
12
atherosclerosis diabetic
8
apoptotic cells
8
contributes aggravated
8
aggravated atherosclerosis
8
efferocytosis capacity
8
macrophages plaque
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!