Key residues involved in the interaction between chlorpyrifos and a chemosensory protein in Rhopalosiphum padi: Implication for tracking chemical residues via insect olfactory proteins.

Sci Total Environ

State Key Laboratory of Crop Stress Biology for Arid Areas,Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Published: June 2024

The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a K value of 4.763 ± 0.491 μM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172361DOI Listing

Publication Analysis

Top Keywords

tracking chemical
12
chemical residues
12
rhopalosiphum padi
8
residues detecting
8
detecting environmental
8
environmental pollution
8
csps bind
8
rpcsp1 chlorpyrifos
8
chlorpyrifos
5
csps
5

Similar Publications

Breath biopsy is emerging as a rapid and non-invasive diagnostic tool that links exhaled chemical signatures with specific medical conditions. Despite its potential, clinical translation remains limited by the challenge of reliably detecting endogenous, disease-specific biomarkers in breath. Synthetic biomarkers represent an emerging paradigm for precision diagnostics such that they amplify activity-based biochemical signals associated with disease fingerprints.

View Article and Find Full Text PDF

Sensitive characterization of complex chemical reactions in black garlic preparation based on on-line extraction electrospray ionization mass spectrometry.

Food Chem

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China. Electronic address:

Changes in chemical composition during food processing and handling are crucial for the alteration of food flavor and function, and accurate characterization of key chemical reaction pathways in complex food matrices is one of the core challenges in food chemistry research. Here, this study attempts to establish a strategy for sensitive characterization of chemical reactions during food processing based on on-line extraction electrospray ionization mass spectrometry (oEESI-MS). The process of making garlic into black garlic, a traditional global flavor food, was chosen as an exemplary research template.

View Article and Find Full Text PDF

Visualization of in-situ chemical flow through sand using neutron radiography.

Appl Radiat Isot

December 2024

Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.

Chemical movement through soil is an important process in agriculture and ecology. Observing the spatial and temporal dynamics of these processes using conventional chemical ecology methods requires techniques that are destructive and/or lack resolution. Neutron radiography has the capability to allow chemical motion through sand/soil to be tracked with high spatial and temporal resolution, and we show that it allows for the motion of hydrophobic and hydrophilic chemicals to be distinguished.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Tribological Properties of Selected Ionic Liquids in Lubricated Friction Nodes.

Materials (Basel)

December 2024

Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.

This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!