Modification of the phenyl ring B of phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates by pyridinyl moiety leads to novel antimitotics targeting the colchicine-binding site.

Bioorg Med Chem Lett

Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

Published: June 2024

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, β-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2024.129745DOI Listing

Publication Analysis

Top Keywords

colchicine-binding site
8
tubulin polymerisation
8
modification phenyl
4
phenyl ring
4
ring phenyl
4
phenyl 4-2-oxoimidazolidin-1-ylbenzenesulfonates
4
4-2-oxoimidazolidin-1-ylbenzenesulfonates pyridinyl
4
pyridinyl moiety
4
moiety leads
4
leads novel
4

Similar Publications

Cancer kills about 10 million people every year. Medicinal plants remain a major source in the global search for anticancer drugs. In this study, 3,4,3'-tri--methylflavellagic acid (MFA) was isolated from the methanol root extract of .

View Article and Find Full Text PDF

Background: Piperidines are among the essential synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. The synthesis of newer derivatives by incorporating different amines paves the way for the introduction of novel drug combinations for current cancer treatments.

Method: The new combinations of 1-(4-bromo-2-(pyrrolidine-1-yl) benzyl) piperidine derivatives were synthesized by adding various amino groups.

View Article and Find Full Text PDF

Inhibitors of tubulin polymerization represent a promising therapeutic approach for the treatment of solid tumors. Molecules that bind to the colchicine site are of interest as they can function with a dual mechanism of action as both potent antiproliferative agents and tumor-selective vascular disrupting agents (VDAs). One such example is a 2-aryl-3-aroyl-indole molecule (OXi8006) from our laboratory that demonstrates potent inhibition of tubulin polymerization and strong antiproliferative activity (cytotoxicity) against a variety of human cancer cell lines.

View Article and Find Full Text PDF

Design, synthesis, and antitumor evaluation of quinazoline-4-tetrahydroquinoline chemotypes as novel tubulin polymerization inhibitors targeting the colchicine site.

Eur J Med Chem

February 2025

State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China. Electronic address:

We designed, synthesized, and evaluated the antitumor activity of a series of novel quinazoline-4-(6-methoxytetrahydroquinoline) analogues. Among the tested compounds, 4a4 exhibited the most potent antiproliferative activities across four human cancer cell lines with half-maximal inhibitory concentration (IC) values ranging from 0.4 to 2.

View Article and Find Full Text PDF

Synthesis, biological evaluation and mechanism study of a novel indole-pyridine chalcone derivative as antiproliferative agent against tumor cells through dual targeting tubulin and HK2.

Eur J Med Chem

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, China. Electronic address:

Chalcones have the characteristics of simple structure, easy synthesis and potent anti-tumor activity. Herein, a small library of fifty-five novel indole-chalcone derivatives were rationally designed and facilely synthesized. Consequently, their antiproliferative activity was systematically evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!