A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Organophosphate toxicity patterns: A new approach for assessing organophosphate neurotoxicity. | LitMetric

Organophosphorus compounds or organophosphates (OPs) are widely used as flame retardants, plasticizers, lubricants and pesticides. This contributes to their ubiquitous presence in the environment and to the risk of human exposure. The persistence of OPs and their bioaccumulative characteristics raise serious concerns regarding environmental and human health impacts. To address the need for safer OPs, this study uses a New Approach Method (NAM) to analyze the neurotoxicity pattern of 42 OPs. The NAM consists of a 4-step process that combines computational modeling with in vitro and in vivo experimental studies. Using spherical harmonic-based cluster analysis, the OPs were grouped into four main clusters. Experimental data and quantitative structure-activity relationships (QSARs) analysis were used in conjunction to provide information on the neurotoxicity profile of each group. Results showed that one of the identified clusters had a favorable safety profile, which may help identify safer OPs for industrial applications. In addition, the 3D-computational analysis of each cluster was used to identify meta-molecules with specific 3D features. Toxicity was found to correspond to the level of phosphate surface accessibility. Substances with conformations that minimize phosphate surface accessibility caused less neurotoxic effect. This multi-assay NAM could be used as a guide for the classification of OP toxicity, helping to minimize the health and environmental impacts of OPs, and providing rapid support to the chemical regulators, whilst reducing reliance on animal testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.134236DOI Listing

Publication Analysis

Top Keywords

safer ops
8
phosphate surface
8
surface accessibility
8
ops
7
organophosphate toxicity
4
toxicity patterns
4
patterns approach
4
approach assessing
4
assessing organophosphate
4
organophosphate neurotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!