In this computational study, we advanced the understanding of the antigenic properties of the NADC-34-like isolate of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), named YC-2020, relevant in veterinary pathology. We utilized sequence comparison analyses of the M and N proteins, comparing them with those of NADC34, identifying substantial amino acid homology that allowed us to highlight conserved epitopes and crucial variants. Through the application of Clustal Omega for multiple sequence alignment and platforms like Vaxijen and AllerTOP for predicting antigenic and allergenic potential, our analyses revealed important insights into the conservation and variation of epitopes essential for the development of effective diagnostic tools and vaccines. Our findings, aligned with initial experimental studies, underscore the importance of these epitopes in the development of targeted immunodiagnostic platforms and significantly contribute to the management and control of PRRSV. However, further studies are required to validate the computational predictions of antigenicity for this new viral isolate. This approach underscores the potential of computational models to enable ongoing monitoring and control of PRRSV evolution in swine. While this study provides valuable insights into the antigenic properties of the novel PRRSV isolate YC-2020 through computational analysis, it is important to acknowledge the limitations inherent to in silico predictions, specifically, the absence of laboratory validation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetimm.2024.110754 | DOI Listing |
J Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFTheriogenology
December 2024
College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.
View Article and Find Full Text PDFJ Anim Sci
January 2025
Animal Science Department, University of Nebraska - Lincoln, Lincoln, NE 68583, USA.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a syndrome characterized by reproductive failure and respiratory complications (PRRS). Early detection and classification of PRRSV strains are vital for appropriate management strategies to minimize loss following outbreaks. The most widely used classification method for PRRSV is based on open reading frame 5 (ORF5) sequences.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Changchun Veterinary Research Institute, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Chinese Academy of Agricultural Sciences, Changchun, China.
Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive and respiratory diseases in sow herds and piglets. The emergence of ORF5 RFLP 1-7-4-like (NADC34-like) PRRSV strain in China has brought a new round of challenges to PRRSV prevention.
Methods: In addition, recombinant adenovirus vaccine candidates against the newly emerged NADC34-like strain were constructed in the study; the immunogenicity of the vaccine was investigated in piglets.
Imeta
December 2024
Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China.
The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!