A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimating Surgical Urethral Length on Intraoperative Robot-Assisted Prostatectomy Images Using Artificial Intelligence Anatomy Recognition. | LitMetric

To construct a convolutional neural network (CNN) model that can recognize and delineate anatomic structures on intraoperative video frames of robot-assisted radical prostatectomy (RARP) and to use these annotations to predict the surgical urethral length (SUL). Urethral dissection during RARP impacts patient urinary incontinence (UI) outcomes, and requires extensive training. Large differences exist between incontinence outcomes of different urologists and hospitals. Also, surgeon experience and education are critical toward optimal outcomes. Therefore, new approaches are warranted. SUL is associated with UI. Artificial intelligence (AI) surgical image segmentation using a CNN could automate SUL estimation and contribute toward future AI-assisted RARP and surgeon guidance. Eighty-eight intraoperative RARP videos between June 2009 and September 2014 were collected from a single center. Two hundred sixty-four frames were annotated according to prostate, urethra, ligated plexus, and catheter. Thirty annotated images from different RARP videos were used as a test data set. The dice (similarity) coefficient (DSC) and 95th percentile Hausdorff distance (Hd95) were used to determine model performance. SUL was calculated using the catheter as a reference. The DSC of the best performing model were 0.735 and 0.755 for the catheter and urethra classes, respectively, with a Hd95 of 29.27 and 72.62, respectively. The model performed moderately on the ligated plexus and prostate. The predicted SUL showed a mean difference of 0.64 to 1.86 mm difference human annotators, but with significant deviation (standard deviation = 3.28-3.56). This study shows that an AI image segmentation model can predict vital structures during RARP urethral dissection with moderate to fair accuracy. SUL estimation derived from it showed large deviations and outliers when compared with human annotators, but with a small mean difference (<2 mm). This is a promising development for further research on AI-assisted RARP.

Download full-text PDF

Source
http://dx.doi.org/10.1089/end.2023.0697DOI Listing

Publication Analysis

Top Keywords

surgical urethral
8
urethral length
8
artificial intelligence
8
urethral dissection
8
incontinence outcomes
8
image segmentation
8
sul estimation
8
rarp videos
8
ligated plexus
8
human annotators
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!