Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant that is found in certain amounts in wastewaters and even in water bodies, despite its known biodegradability. This study aimed to assess the influence of nitrate, sulphate, and iron (III) on LAS anaerobic degradation and biomass microbial diversity. Batch reactors were inoculated with anaerobic biomass, nutrients, LAS (20 mg L), one of the three electron acceptors, and ethanol (40 mg L) as a co-substrate. The control treatments, with and without co-substrate, showed limited LAS biodegradation efficiencies of 10 ± 2% and 0%, respectively. However, when nitrate and iron (III) were present without co-substrate, biodegradation efficiencies of 53 ± 4% and 75 ± 3% were achieved, respectively, which were the highest levels observed. Clostridium spp. was prominent in all treatments, while Alkaliphilus spp. and Bacillus spp. thrived in the presence of iron, which had the most significant effect on LAS biodegradation. Those microorganisms were identified as crucial in affecting the LAS anaerobic degradation. The experiments revealed that the presence of electron acceptors fostered the development of a more specialised microbiota, especially those involved in the LAS biodegradation. A mutual interaction between the processes of degradation and adsorption was also shown.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33158-4DOI Listing

Publication Analysis

Top Keywords

iron iii
12
electron acceptors
12
anaerobic degradation
12
las biodegradation
12
nitrate sulphate
8
sulphate iron
8
linear alkylbenzene
8
alkylbenzene sulfonate
8
las anaerobic
8
biodegradation efficiencies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!