Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Wuda coal fire in Inner Mongolia, China, is a global catastrophic event. It emits a huge volume of organic pollutants, including polycyclic aromatic compounds (PACs), which are widely concerning due to their physiological toxicity and environmental persistence. However, there is no systematic study on the enrichment and migration patterns of PACs emitted from coal fires. Here, we compared samples from coal fire sponges and surrounding soil, and analyzed 47 PACs using GC × GC-TOFMS. Data analysis showed that the average content of 16 polycyclic aromatic hydrocarbons (16PAHs) in the coal fire sponge was 15400.65 ng/g, which is about 4.2 times higher than that in the surrounding soil. Meanwhile, 31 PACs were detected at levels far exceeding those of 16PAHs. The distribution pattern of PACs showed that coal fire sources are more likely to produce and store 16PAHs while surrounding soils are more likely to be enriched with PAH derivatives. The cancer risk assessment revealed a significant cancer risk in both the coal fires and the surrounding soil. The formation mechanism of oxygenated PAHs was also explored, and it was found that coal fires emit 16PAHs and alkylated PAHs, which oxidize to form oxygenated PAHs during migration to surrounding soils. The value of naphthaldehyde/alkylated naphthalene (< 2) can be referenced as characteristic markers of coal fire pollution. This provides a new perspective on the sources of PACs in the current environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-32980-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!