Background: X-linked dystrophin-deficient muscular dystrophy (MD) is a form of MD caused by variants in the DMD gene. It is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles.
Hypothesis/objectives: Identify deleterious genetic variants in DMD by whole-genome sequencing (WGS) using a next-generation sequencer.
Animals: One MD-affected cat, its parents, and 354 cats from a breeding colony.
Methods: We compared the WGS data of the affected cat with data available in the National Center for Biotechnology Information database and searched for candidate high-impact variants by in silico analyses. Next, we confirmed the candidate variants by Sanger sequencing using samples from the parents and cats from the breeding colony. We used 2 genome assemblies, the standard felCat9 (from an Abyssinian cat) and the novel AnAms1.0 (from an American Shorthair cat), to evaluate genome assembly differences.
Results: We found 2 novel high-impact variants: a 1-bp deletion in felCat9 and an identical nonsense variant in felCat9 and AnAms1.0. Whole genome and Sanger sequencing validation showed that the deletion in felCat9 was a false positive because of misassembly. Among the 357 cats, the nonsense variant was only found in the affected cat, which indicated it was a de novo variant.
Conclusion And Clinical Importance: We identified a de novo variant in the affected cat and next-generation sequencing-based genotyping of the whole DMD gene was determined to be necessary for affected cats because the parents of the affected cat did not have the risk variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099787 | PMC |
http://dx.doi.org/10.1111/jvim.17078 | DOI Listing |
Cell Res
January 2025
Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.
Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.
View Article and Find Full Text PDFAm J Med Genet A
January 2025
NHC Key Laboratory of Endocrinology (Peking Union Medical College Hospital), Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
46,XY differences/disorders of sex development (DSD) are genetically heterogeneous conditions characterized by atypical development of the reproductive system. MYRF, a gene encoding a transcription factor, has been identified as a potential causative gene for DSD and cardiac urogenital syndrome (CUGS). This study aims to delineate the clinical manifestations of patients with 46,XY DSD and MYRF mutations, encompassing both from our cohort and cases reported in the literature.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Pediatric Dermatology, Heim Pal National Pediatric Institute, 1089 Budapest, Hungary.
Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder caused by pathogenic variants in the gene. Although genotype-phenotype correlation studies are increasing, robust clinically relevant correlations have remained limited. We conducted a retrospective analysis of data obtained from a cohort of 204 Hungarian individuals, with a mean age of 16 years (age range: 1-33 years).
View Article and Find Full Text PDFDiabetes
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!