Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11194072 | PMC |
http://dx.doi.org/10.1093/nar/gkae265 | DOI Listing |
Cells
September 2024
GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France.
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, , coding for a SUMO E3 ligase, and (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of CST temperature-sensitive mutants. -, - and - mutants were isolated next due to being sensitive to intracellular Siz1 dosage.
View Article and Find Full Text PDFYeast
August 2024
Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia.
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C.
View Article and Find Full Text PDFNucleic Acids Res
June 2024
Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA.
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase.
View Article and Find Full Text PDFCell Rep
April 2024
Cell Cycle Laboratory, The Francis Crick Institute, NW1 1AT London, UK; Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA.
In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm.
View Article and Find Full Text PDFTelomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!