This study investigated the influence of substituting 60, 80, and 100% of the sugar in traditional cocoa hazelnut paste (control) formulation with inulin-stevia (90:10, w/w) mixture on textural and rheological characteristics, melting behavior, water activity (a), particle size distribution (PSD), and color. Textural, rheological, melting properties, and color of samples were analyzed after 1, 2, and 3 months of storage at 11°C. Nuclear magnetic resonance (NMR) relaxometry experiments were also performed to understand the interaction of new ingredients with oil. Replacement of sugar with inulin-stevia gave darker color, reduced Casson yield stress, and changed the textural parameters and melting profile of the samples depending on the level but did not create a remarkable effect on PSD and Casson plastic viscosity. Increasing inulin-stevia content yielded lower a and higher T values indicating decreased mobility of water. Complete removal of sugar caused low spreadability. The results showed that an 80% replacement level yielded a product with similar textural parameters and fat-melting mouth feeling compared to control sample. Cocoa hazelnut spreads prepared with inulin and stevia showed good textural stability during storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jtxs.12834 | DOI Listing |
Carbohydr Polym
March 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China. Electronic address:
To strengthen starch gel quality and improve the deterioration from freeze-thaw cycles, corn starch/whey protein isolate (WPI)/caffeic acid (CA) composite gels were rationally constructed in this study. The results showed that the introduction of WPI and CA significantly optimized the microstructure of the gels, an observation verified by SEM and CLSM. In addition, FT-IR and XRD analyses further revealed that the interaction mechanism within the composite gel was mainly due to the reinforcement of hydrogen bonds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea. Electronic address:
This study investigated the effects of oil addition on the physical and chemical properties of high-moisture texturized proteins (HMTPs), focusing on soy protein isolate (SPI) and pea protein isolate (PPI). Rheological analysis revealed contrasting behaviors: SPI exhibited decreased rheological parameters at low oil concentrations (1, 3 %), followed by a significant increase at higher concentrations (5, 10 %), whereas PPI showed a consistent decline across all oil concentrations. The superior emulsifying and gelling abilities of SPI resulted in stronger protein-protein interactions and greater hardness at higher oil concentrations.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang, PR China.
Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China. Electronic address:
The structure of soft tissues is often destroyed by injury and aging. Injectable fillers eliminate the need for surgery and enhance repair. Hyaluronic acid-based hydrogels are commonly employed for their effectiveness and biocompatibility.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
The stabilizing effect of biopolymers on Pickering emulsions has attracted widespread interest in recent years. In this study, the interactions between chitosan (CS) and octenyl succinic anhydride starch (OS) were investigated and used to modulate the interfacial properties of Pickering emulsions, which are crucial for determining emulsion stability. CS/OS complex particles were prepared via electrostatic and hydrogen-bonding interactions and used to stabilize Pickering emulsions for the encapsulation of astaxanthin (AST).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!