Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11012314 | PMC |
http://dx.doi.org/10.3390/ijms25074134 | DOI Listing |
Arch Pharm Res
January 2025
College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
Tumor microenvironment (TME) is composed of diverse cell types whose interactions, both direct and indirect, significantly influence tumorigenesis and therapeutic outcomes. Within TME, reactive oxygen species (ROS) are produced by various cells and exhibit a dual role: moderate ROS levels promote tumor initiation and progression, whereas excessive levels induce cancer cell death, influencing the efficacy of anticancer therapies. Inflammasomes, cytosolic multiprotein complexes, are pivotal in multiple stages of tumorigenesis and play a crucial role in establishing the inflammatory TME.
View Article and Find Full Text PDFClin Exp Med
January 2025
LSU-LCMC Cancer Center, LSU School of Medicine, 1700 Tulane Avenue, Room 510, New Orleans, LA, 70112, USA.
Anti-tumor immunotherapy was rediscovered and rejuvenated in the last two decades with the discovery of CTLA-4, PD-1 and PD-L1 and the roles in inhibiting immune function and tumor evasion of anti-tumor immune response. Following the approval of the first checkpoint inhibitor ipilimumab against CTLA-4 in melanoma in 2011, there has been a rapid development of tumor immunotherapy. Furthermore, additional positive and negative molecules among the T-cell regulatory systems have been identified that that function to fine tune the stimulatory or inhibitory immune cells and modulate their functions (checkpoint modulators).
View Article and Find Full Text PDFCancer Res
January 2025
National Cancer Institute, NIH, Frederick, MD, United States.
Three-dimensional (3D) in vitro cell culture models are invaluable tools for investigating the tumor microenvironment (TME). However, analyzing the impact of critical stromal elements, such as extracellular matrix (ECM), remains a challenge. Here, we developed a hydrogel-free self-assembly platform to establish ECM-rich 3D "MatriSpheres" to deconvolute cancer cell-ECM interactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
Immune checkpoint (ICP) blockade has shown limited effectiveness in glioblastoma (GBM), particularly in the mesenchymal subtype, where interactions between immune cells and glioblastoma cancer stem cells (GSCs) drive immunosuppression and therapy resistance. Tailoring ICPs specific to GSCs can enhance the antitumor immune response. This study proposes the use of lipid nanoparticles (LNPs) encapsulating CRISPR RNAs as an in vivo screening tool for ICPs in a syngeneic model of mesenchymal GSCs.
View Article and Find Full Text PDFAdv Mater
January 2025
Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
Lysosome-targeting chimeras (LYTACs) have recently emerged as a promising therapeutic strategy for degrading extracellular and membrane-associated pathogenic proteins by hijacking lysosome-targeting receptors. However, the antitumor performance of LYTAC is limited by its insufficient tumor accumulation and nonspecific activation. Additionally, the synergistic effects of LYTACs and other therapeutic modalities are crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!